

MANAGEMENT OF SEWAGE SLUDGE IN THE CERAMIC TILE INDUSTRY

By

Eman Mohamed Abd El-Hamid Ramadan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

MANAGEMENT OF SEWAGE SLUDGE IN THE CERAMIC TILE INDUSTRY

By Eman Mohamed Abd El–Hamid Ramadan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Under the Supervision of

Prof. Magdi Fouad Abadir	Prof. Hanem Abd El–Rahman Sibak
Chemical Engineering Department Faculty of Engineering, Cairo University	Chemical Engineering Department Faculty of Engineering, Cairo University
Ass. Prof. Shakina	z Ali El–Sherbiny
Chemical Enginee	ering Department
Faculty of Engineering	ng, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

MANAGEMENT OF SEWAGE SLUDGE IN THE CERAMIC TILE INDUSTRY

By Eman Mohamed Abd El–Hamid Ramadan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Approved by the Examining Committee

Prof. Magdi Fouad Abadir, Thesis Main Advisor, Faculty of Engineering, Cairo University

Prof. Mai Kamal El-Deen El-Said, Internal Examiner, Faculty of Engineering, Cairo University

Prof. Mohamed El-Menshawy Shalaby, External Examiner, Central Metallurgical Research Institute (CMRDI)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer: Eman Mohamed Abd El Hamid Ramadan

Date of Birth: 7 / 2 / 1990 **Nationality:** Egyptian

E-mail: iman_abdelhamid_90@hotmail.com

Phone.: 01015769123

Address: 25 - Moawia Abn Abo Sofian - Ard El Gamaia-

Embaba

Registration Date: 1/10/2012

Awarding Date: / /

Degree: Master of Science

Department : Chemical Engineering Department

Supervisors: Prof. Dr. Magdi Fouad Abadir

Prof. Dr Hanem Abd El–Rahman Sibak **Ass. Prof.** Shakinaz Ali El–Sherbiny

Examiners: Prof. Dr. Magdi Fouad Abadir

Prof. Dr. Mai Kamal El-Deen El-Said

Prof. Dr. Mohamed El–Menshawy Shalaby (Professor in Central

Metallurgical Research Institute)

Title of Thesis: Management of Sewage Sludge in the Ceramic Tile Industry

Key Words: Ceramic–Tiles–Sewage–Sludge

Summary:

The sewage sludge produced from the waste water treatment plant was tested for chemical and mineralogical composition. It was gradually added to standard wall and floor tiles mix in proportions ranging from 0% to 35%. The samples were pressed, dried and then fired at temperature from 1050 to 1150 °C. The vitrification parameters, which are linear firing shrinkage, loss on ignition, water absorption, apparent porosity, bulk density, closed porosity, and mechanical properties, were determined and compared ISO standards. Fired samples of the proposed mixtures were investigated by scanning electron microscope (SEM).

Sewage sludge can be used in ceramic tiles of thicknesses < 7.5 mm for wall tiles with water absorption > 10 % at temperature 1150 °C and percentage 7 %, while for floor tiles with water absorption 6 % < E \leq 10 %, 7 % waste addition can be used at 1150 °C, and for floor tiles with water absorption > 10 %, 14 % waste addition can be used at temperature 1150 °C, which are recommended for both its economic and environmental benefits.

ACKNOWLEDGEMENTS

The author's special thanks and gratitude go to God for his mercy, kindness, and support.

The author wishes to express her deep thanks and gratitude to her main supervisor Prof. M.F. Abadir, at the Chemical Engineering Department, Faculty of Engineering, Cairo University, for suggesting the research point, supervising the experimental work, in addition to his continuous encouragement.

The author also thanks both of Prof. H.A. Sibak and Dr. S.A. El–Sherbiny, at the Chemical Engineering Department, Faculty of Engineering, Cairo University, for her supervision and help.

Deepest gratitude is also due to Dr. Sh.K. Amin, Assistant Professor, at the Chemical Engineering and Pilot Plant Department, National Research Centre, for supervising and following up the experimental research work. Her efforts in solving the practical problems that faced the author are deeply appreciated.

The author deep thanks also due to Eng. Ahmed Samir, Quality Manager of the Royal Company for Ceramic Tiles (CERAMICA ROYAL), and to the staff of the Quality Control Laboratory in this factory, for helping the author to perform the experimental work and the required tests in both factories.

Finally, the author expresses her gratitude to her mum for her encouragement to do her best, believing in her and supporting her dreams and also thanks her dad, and all her family members, for their continuous encouragement and help.

Table of Contents

		Page
	TADY DC	
	TABLES	
LIST OF	FIGURES	VI
LIST OF	ABREVIATIONS	VIII
	SYMBOLS	
	CT	
	R (1): INTRODUCTION	
	R (2): LITERATURE REVIEW	
2.1. Sewa	ge Sludge	6
2.1.1.	Types of Sludge	6
2.1.1.1.	Primary Sludge	6
2.1.1.2.	Secondary Sludge	6
2.1.1.3.	Chemical Sludge	7
2.1.2.	Physical Properties of Sludge	7
2.1.2.1.	Primary Sludge	
2.1.2.2.	Secondary Sludge	7
2.1.3.	Production of Sewage Sludge	7
2.1.4.	Chemical Composition of Sewage Sludge	
2.1.4.1.	Heavy Metals	
2.1.4.2.	Nutrients Content.	
2.1.4.3.	Pathogenic Microorganisms	8
2.1.5.	Disposal of Sewage Sludge	
2.1.5.1.	Landfill	
2.1.5.2.	Agriculture	10
2.1.5.3.	Composting.	10
2.1.5.4.	Heat Treatment.	11
2.2. Ceran	nics	12
2.2.1.	Ceramic Tiles Historical Background	12
2.2.2.	Raw Materials Used to Produce Ceramic Tiles	
2.2.2.1.	Clay	
2.2.2.2.	Silica	
2.2.2.3.	Feldspar	
2.2.3.	Ceramic Tiles Processing	
2.2.3.1.	Quarrying and Storage of Raw Materials	
2.2.3.2.	Crushing.	
2.2.3.3.	Grinding	
2.2.3.4.	Screening.	
2.2.3.5.	Mixing	
2.2.3.6.	Spray Drying	16
2.2.3.7.	Dry Pressing.	
2.2.3.8.	Drying	
2.2.3.9.	Firing	19

2.2.4.	Ceramic Tiles Properties and Standards	21
2.3. Was	tes Used in the Manufacture of Ceramic Tiles	21
2.3.1.	Introduction	21
2.3.2.	Recycling of Waste	22
2.3.3.	Overview of Recycled Wastes in Ceramic Tiles Industry	23
2.3.3.1.	Red Mud	23
2.3.3.2.	Quarry Wastes	
2.3.3.3.	Metallurgical Wastes	25
2.3.3.4.	By Product Silica Fume (Flour)	
2.3.3.5.	Glass Waste (Cullet)	
2.3.3.6.	Granite Waste	
2.3.3.7.	Sludge Wastes	
2.3.3.8.		
2.3.3.9.	\mathcal{E}	
CHAPTI	ER (3): EXPERIMENTAL WORK	34
	oduction	
	Materials	
	essment of Raw Materials	
3.3.1.	Chemical Analysis (XRF)	
3.3.1. 3.3.2.	Mineralogical Analysis (XRD)	
3.3.2. 3.3.3.	Thermal Analysis (DTA and TGA).	
3.3.3. 3.3.4.	Screen Analysis (DTA and TGA)	
3.3.4. 3.3.5.	Determination of Powder Density.	
	•	
	paration of Mixtures	
3.4.1.	Formation of Tile Specimens.	
3.4.2.	Determination of Plasticity of the Prepared Mixtures	40
3.4.3.	Determination of Green Strength and Modulus of Rapture	4.1
0.7	for Prepared Tiles	
	ng of Tiles Specimens	
	ting of Fired Ceramic Tiles Specimens	
3.6.1.	\mathcal{E}	
3.6.2.	Determination of Loss on Ignition.	45
3.6.3.	Determination of Water Absorption, Bulk Density, Apparent	
	Porosity and Specific Gravity for Fired Ceramic Tiles	
3.6.4.	Determination of Breaking Strength and Modulus of Rapture	47
3.6.5.	Electron Microscopic Investigations.	
CHAPTI	ER (4): RESULTS AND DISCUSSION	48
	oduction	
	essment of Raw Materials	
4.2.1. Ass	Chemical Analysis of Raw Materials	
4.2.1.	Mineralogical Analysis of Raw Materials	
4.2.2.	Thermal Analysis of Raw Materials	
4.2.3.	Screen Analysis of Raw Materials.	
4.2.4. 4.2.5.	Powder Density of Raw Materials.	
	•	
	essment of Unfired Tiles Mixes	
4.3.1.	Effect of Waste Addition on Plasticity of Mixtures	
4.3.2.	Effect of Waste Addition on Drying Shrinkage Effect of Waste Addition on Green Strength	
4.3.3.	Effect of Waste Addition on Green Strength	5/

4.4.	Effe	ct of Waste Addition on the Sintering Properties	59
4.4	4.1.	Firing Shrinkage	59
4.4	4.2.	Loss of Ignition	63
4.4	4.3.	Water Absorption	65
4.4	4.4.	Apparent Porosity	67
4.4	4.5.	Bulk Density	70
4.4	4.6.	Mechanical Properties.	
4.4	4.7.	SEM Results of Fired Samples.	
4.4	4.8.	Compatibility with Standards	78
CHA	APT]	ER (5): CONCLUSION	79
5.1.		Possibility of substituting part of the main body mix	
	of c	eramic	80
5.2.	The	Effect of Waste Addition on the Ceramic Tiles	80
5.2	2.1.	Effect of Waste Addition on the Plasticity of Raw Materials	80
5.2	2.2.	Effect of Waste Addition on Dry Shrinkage	80
5.2	2.3.	Effect of Waste Addition Green Strength	80
5.2	2.4.	Effect of Waste Addition on the Sintering Properties	81
5.2	2.5.	Effect of Waste Addition on Mechanical Properties of Fired Tiles	81
5.2	2.6.	SEM Results for Fired Tiles.	81
5.3.	Sele	ction of the Optimum Percent of Waste Added to	
	Cera	nmic Tiles	82
REF	ERI	ENCES	83
		C SUMMARY	

List of Tables

	Page
CHAPTER (2): LITERATURE REVIEW	
Table (2.1): Concentration of Heavy Metals (MG/KG) in Dried SS in Egypt	
Table (2.2): Concentration of Nutrients in the Dried SS in Egypt	
Table (2.3): The Pathogenic Microorganisms' Presence and Limit in Cairo WWTPs Table (2.4): The Function of Additives	
Table (2.5): Classification of Ceramic Tiles with Respect to Water Absorption	10
and Shaping	
Table (2.6): ISO Standard Limits of Ceramic Tiles	22
CHAPTER (3): EXPERIMENTAL WORK	
Table (3.1): Batch Composition of Basic Mixture	35
Table (3.2): Set of Sieves were Used for Screen Analysis Test	38
CHAPTER (4): RESULTS AND DISCUSSION	
Table (4.1): Chemical Analysis of Raw Materials	49
Table (4.2): Batch Composition of Tile Bodies.	50
Table (4.3): Percent of Free Silica and Organic Matter of Raw Materials	50
Table (4.4): Powder Density of Raw Materials.	55
Table (4.5): Relative Effect of Percent Waste Added and Firing Temperature	
on L.F.S.	60
Table (4.6): Relative Effect of Percent Waste Added and Firing Temperature on Percent	ıt
Water Absorption for Floor Tiles.	67
Table (4.7): Maximum Tolerable Waste Levels Compatible with ISO 13006/2012	67
Table (4.8): ISO Standard for Breaking Strength and MOR (ISO 13006/2012)	72
Table (4.9): Relative Effect of Percent Waste Added and Firing Temperature on	
Breaking Strength of Wall Tiles.	75
Table (4.10): Relative Effect of Percent Waste Added and Firing Temperature on	
Breaking Strength of Floor Tiles	75
Table (4.11) Compatibility of Suggested Mix with ISO Standard for Tiles with	
Thickness Less Than 7.5 mm	78

List of Figures

	Page
CHAPTER (1): INTRODUCTION	
Fig. (1.1): Dumping Sewage Sludge in Water	2
Fig. (1.2): Sewage Sludge	
CHAPTER (2): LITERATURE REVIEW	
Fig. (2.1): Waste Water Treatment Plant (WWTP)	6
Fig. (2.2): Treatment and Disposal of SS in Selected European Countries	10
Fig. (2.3): In–vessel Co–composting.	11
Fig. (2.4): Open Windrow Co–composting.	
Fig. (2.5): Structure of Kaolinite.	
Fig. (2.6): Flow Diagram for the Manufacture of Ceramic Tile.	
Fig. (2.7): Muller Mixer	
Fig. (2.8): Diagrammatic Representation of Spry Dryer Arrangement	
Fig. (2.9): Stages of Dry Pressing.	
Fig. (2.10): Elimination of Water during Drying.	
Fig. (2.11): Schematic Views of a Roller Kiln.	
Fig. (2.12): A Roller Kiln.	20
CHAPTER (3): EXPERIMENTAL WORK	
Fig. (3.1): AXIOS, Panalytical 2005, Wavelength Dispersive (WD – XRF)	
Sequential Spectrometer	36
Fig. (3.2): Set of Sieves were Used for Screen Analysis Test.	
Fig. (3.3): Laboratory Ball Mill.	
Fig. (3.4): The Automatic Laboratory Hydraulic Press	
Fig. (3.5): Pfefferkorn Plasticimeter.	
Fig. (3.6): Pfefferkorn Plasticity Method.	
Fig (3.7): Bending Strength Measuring Device.	43
Fig. (3.8): Laboratory Furnace.	
Fig. (3.9): The Industrial Furnace Profile.	45
CHAPTER (4): RESULT AND DISCUSSION	
Fig. (4.1): XRD Pattern of Floor Mix.	
Fig. (4.2): XRD Pattern of Wall Mix	
Fig. (4.3): XRD Pattern of Sewage Sludge Waste	
Fig. (4.4): DTA and TGA Pattern of Floor Mix.	
Fig. (4.5): DTA and TGA Pattern of Wall Mix.	
Fig. (4.6): DTA and TGA Pattern of Sewage Sludge Waste	
Fig. (4.7): Cumulative Fraction Retained For Different Raw Materials	
Fig. (4.8): Effect of Waste Addition on Plasticity Number.	
Fig. (4.9): Effect of Waste Addition on Linear Drying Shrinkage	
Fig. (4.10): Effect of Waste Addition on Green Modulus of Rupture	
Fig. (4.12): Effect of Waste Addition on Linear Firing Shrinkage	
Fig. (4.13): Effect of Waste Addition on Volume Firing Shrinkage of Floor	00
Tiles	61

Fig. (4.14): Comparison between Observed and Calculated Values of FVS for Floor	
Tiles	62
Fig. (4.15): Effect of Waste Addition on Total Linear Shrinkage	
Fig. (4.16): Effect of Waste Addition on Loss on Ignition	64
Fig. (4.17): Observed Against Calculated Values of LOI for Wall Tiles	65
Fig. (4.18): Effect of Waste Addition on Water Absorption	66
Fig. (4.19): Effect of Waste Addition on Apparent Porosity	68
Fig. (4.20): Relation between 1/P and 1/WA for Wall Tiles	69
Fig. (4.21): Relation between Porosity and Water Absorption for Floor Tiles	70
Fig. (4.22): Effect of Waste Addition on Bulk Density.	71
Fig. (4.23): Relation between Bulk Density and Porosity for Wall Tiles	72
Fig. (4.24): Effect of Waste Addition on Breaking Strength.	73
Fig. (4.25): Effect of Waste Addition on Modulus of Rupture	74
Fig. (4.26): Effect of Porosity on MOR.	76
Fig. (4.27): SEM Micrograph of a Specimen Containing 15% Waste Fired at 1150 °C	
, (400×)	77
Fig. (4.28): SEM Micrograph of a Specimen Containing 15% Waste Fired at	
1150 °C, (1600×)	78

List of Abbreviations

B.S : Breaking Strength

DTA : Differential Thermal Analysis

GB : Glazed, Apparent Change in Appearance

GLB : Glazed, Low Concentration, Apparent Change in Appearance

I.S.S.A : Incinerated Sewage SludgeL.D.S : Linear Drying Shrinkage

L.F.S : Linear Firing Shrinkage

L.O.I : Loss on Ignition

MOR : Modulus of Rupture

S.S : Sewage Sludge

SEM : Scanning Electron Microscope

T.L.S : Total Linear Shrinkage

TGA : Thermal Gravimetric Analysis

UB : Unglazed, Apparent Change at the Cut Edge

ULB : Unglazed, Low Concentration, Apparent Change at the Cut Edge

W.A. : Water Absorption

WWTP : Waste Water Treatment Plant

XRD: X - Ray Diffraction

XRF: X - Ray Fluorescence

List of Symbols

P : Apparent Porosity

E : Water Absorption

B : Bulk Density

T : Apparent Specific Gravity

L : Distance between Two Supports

b : Width of the Tested Sample

d : The Minimum Thickness of the Tested Sample

L_i : Tile Length after Drying

L_f : Tile Length after Firing

D : Dry mass

S : Suspended Mass

M : Saturated Mass

σ : Mechanical Strength

ABSTRACT

Sewage sludge is produced from WWTPs after the primary and the secondary treatment of municipal waste water, the daily production of dry sewage sludge in Egypt is estimated to be 5.8×10^3 tons. Sewage sludge represents an extremely high ecological hazard to the environment.

The main aim of this thesis is to show the possibility of management of this hazardous waste in wall and floor ceramic tiles industry.

The experimental program includes assessment of raw materials by performing the required analysis, which are XRF, XRD, DTA and TGA. The fine waste was used to partially replacement for wall and floor ceramic tiles basic mixtures from Egyptian raw materials. The replacement ratios varied from zero % to 35 % by weight. Screen analysis, powder density, and plasticity of different mixes were determined.

Rectangular tile specimens of dimensions $110.4 \times 55.4 \times 8 \text{ mm}^3$ were molded by dry pressing under uniaxial pressure of 200 MPa, then dried overnight at 135 °C. Wall tiles samples were fired at temperatures 1050 °C, 1100 °C and 1150 °C, while the floor tiles samples were fired at temperatures 1050 °C, 1100 °C, 1120 °C and 1150 °C. The vitrification parameters, which are linear firing shrinkage, loss on ignition, water absorption, apparent porosity, bulk density, closed porosity, and mechanical properties, were determined and compared to the ISO standards. Fired samples of the proposed mixtures were investigated by scanning electron microscope (SEM).

Sewage sludge can be used in the ceramic tile industry according to the ISO standard limits: for wall tiles 7% waste addition can be used at temperature 1150 °C, while for floor tiles 7 % and 14% waste addition can be used at 1150 °C, which are recommended for both their economic and environmental benefits.

Chapter One