Effect of Ranitidine and Omeprazole on Phosphorus Serum Level in Patients Performing Renal Dialysis

Thesis Submitted in Partial Fulfillment of the Requirements for M.Sc Degree in Pharmaceutical Sciences (Clinical Pharmacy)

By Pharmacist:

Doaa Mohamed Salah El Bohy

Bachelor Degree in Pharmaceutical Sciences, Ain Shams University (2006)

Supervised by:

Prof .Magdy El Sharkawy

Professor of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University

Ass.Prof. Manal El Hamamsy

Assistant Professor of Clinical pharmacy, Faculty of Pharmacy, Ain Shams University.

Faculty of Pharmacy
Ain Shams University
2012

List of abbreviations

ADQI	Acute Dialysis Quality Initiative
AIN	Acute interstitial nephritis
AKI	Acute kidney injury
ALP	Alkaline Phosphatase
APAs	Acid pump antagonists
ARF	Acute renal failure
ATN	Acute tubular necrosis
ATPase	Adenosine triphosphatase
Ca x P	Calcium –Phosphorus product
CaCl ₂	Calcium chloride
CaCO ₃	Calcium Carbonate
cAMP	Cyclic Adenosine monophosphate
CasR	Calcium sensing receptor
CKD	Chronic kidney disease
CNT	Connecting tubules
CRI	Chronic renal insufficiency
CUA	Calcific uremic arteriolopathy
CVD	Cardiovascular disease
CVVH	Continuous venovenous hemofiltration
DCT	Distal convoluted tubules
ECF	Extracellular fluid
EDTA	Ethylenediaminetetraacetic acid
(E.I.P.I.CO.)	Egyptian International Pharmaceutical Industries Co
ESRD	End-stage renal disease
ESRF	End stage renal failure
GFR	Glomular filtration rate
GI	Gastrointestinal
HD	Hemodialysis
iPTH	Intact Parathyroid hormone
IU/L	International unit per liter

K/DOQI	Kidney Disease Outcome Quality Initiative
MBD	Metabolic bone disease
NKF	National Kidney Foundation
Npt2b	sodium phosphate co-transporter
OCPC	Ortho-cresophthalein complexone
PD	Peritoneal dialysis
PMT	Photomultiplier Tube
PO ₄	Phosphorus
PPI	Proton Pump Inhibitors
PT	Proximal tubules
PTH	Parathyroid Hormone
PTx	Parathyroidectomy
RIFLE	Risk, Injury, Failure, Loss and End stage renal
	disease
RRT	Renal replacement therapy

List of Tables

Table number	Title	Page Number
1	Target Range of Serum Parathyroid Hormone (PTH) by Stage of Chronic Kidney Disease (CKD)	67
2	Demographic characteristics of the three studied groups.	81
3	Tests for normality of serum calcium (mg/dl) over 6 months the study period.	83
4	Effect of sex, age, duration of dialysis and group on serum calcium level (mg/dl).	85
5	Comparison between serum calcium (mg/dl) over the study period (6 months) in the 3 studied groups.	87
6	Tests for normality of serum phosphorus (mg/dl) over 6 months the study period.	91
7	Effect of sex, age, duration of dialysis and group on serum phosphorus level (mg/dl).	93
8	Comparison between serum phosphorus (mg/dl) over the study period (6 months) in the 3 studied groups.	95
9	Multiple comparisons tests implemented by Scheffé test.	99
10	Effect of sex, age, duration of dialysis and group on serum PTH (pg/ml).	105
11	Effect of sex and group on serum PTH level (pg/ml).	109

12	Effect of sex, age, duration of dialysis and groups on serum	115
	ALP level (IU/L).	
13	Comparison between serum ALP (IU/L) at baseline and 6 months intervals in the 3 studied groups.	117
14	Effect of group on serum ALP (IU/L).	121
15	Multiple comparisons tests implemented by Scheffé test.	123

List of Figures

Figure number	Title	Page
		Number
1	Schematic diagram of hemodialysis	14
2	Gastrointestinal Absorption of Calcium	17
3	Proposed pathways for calcium (Ca) absorption across the	18
	intestinal epithelium	
4	Renal Handling of Calcium	20
5	Physiologic response to hypocalcaemia	26
6	Pathogenesis of abnormalities in mineral metabolism and	36
	bone disease in CKD	
7	"stepped-care" approach to the prevention and treatment of secondary hyperparathyroidism in CKD	43
8	Chemical structure of Ranitidine	51
9	Structures of proton pump inhibitors	55
10	The Pka of PPIs	57
11	Marginal means of serum calcium in 3 study groups at 6	89
	months interval.	
12	Marginal means of serum phosphorus in 3 study groups at 6	97
	months interval.	
13	Q-Q plot of serum PTH at baseline.	101
14	Q-Q plot of serum PTH at 6 months.	101
15	Frequency distribution of Ln serum PTH at baseline.	103
16	Frequency distribution of Ln serum PTH at 6 months.	103
17	Marginal means of serum PTH in 3 study groups at baseline	107
	and 6 months interval.	
18	Q-Q plot of baseline values of serum ALP.	111
19	Q-Q plot of 6 months values of serum ALP.	111

20	Frequency distribution of Ln ALP at baseline.	113
21	Frequency distribution of Ln ALP at 6 months.	113
22	Marginal means of serum ALP in 3 study groups at baseline and 6 months interval.	119

Contents

• Abstract1
• Introduction2
Review of literature
Clinical pharmacy definition5
Role of clinical pharmacist6
Acute kidney injury7
Chronic kidney disease9
Dialysis13
Calcium Homeostasis15
Phosphorus Homeostasis28
Treatment of hyperphosphatemia41
H2-Receptor antagonists51
Proton pump inhibitors (PPIs)53
Aim of the study61
Patients and methods 62

o Study design	62
o <i>Patients</i>	63
o <i>Methods</i>	64
o Statistical analysis	79
• Results	80
Demographic characteristics	80
Serum calcium	82
Serum phosphorus	90
Serum PTH	100
Serum ALP	110
• Discussion	124
Summary and conclusion	133
References	137
Arabic summary	

Thanks to **ALLAH** who helped me to accomplish this work

My deepest and warmest gratitude to my great supervisor, Ass.Prof. Manal El Hamamsy Associate Professor of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, who in addition to her valuable guidance and supervision, has provided me with a great deal of support, encouragement and Knowledge.

I would like to express my great appreciation and thanks to Prof. Dr. Magdy Mohammad El Sharkaway Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University. It was an honor for me to carry out this work under his continuous guidance, encouragement and expert supervision.

I'm also deeply indebted to Prof. Dr. Mohamed Seif El-Din Ashour Dean of Faculty of Pharmacy, MSA University and Prof. Dr. Gouda Helal, Vice Dean of Faculty of Pharmacy, EL- Azhar University and Dr. Hytham EZZ for his contribution to this research.

I would like to express my thanks and gratitude to EIPICO Company and all staff members of Ain Shams University specialized Hospital.

My special thanks are dedicated to my Mother, Father and all my family for their endless support to me, and for pushing me forward all the time from the A, B, C to the M.Sc.

My special thanks are dedicated to my friends and beloved ones for help and encouragement to deliver this work. Immense support and belief have always kept me going through the hardest times. Abstract

Abstract

Background: Hyperphosphatemia has been reported to induce extraskeletal calcification of soft tissue particularly in the heart as well as bone disease; a link has been reported between gastric hyperacidity and hyperphosphatemia in dialysis patients.

Objectives: To evaluate the effect of ranitidine or omeprazole in combination with CaCO₃ (as a phosphate binder) versus phosphate binders alone CaCO₃ on the serum phosphorus level (PO₄) in patients performing renal dialysis.

Setting: National Institute of Urology and Nephrology and Ain Shams University Specialized Hospital, Cairo, Egypt, from October 2009 to October 2010.

Methods:Patients were categorized into three groups, group I (38 patients) represents the control group, they received CaCO₃ (3gm daily), group II (39 patients) received the same dose of CaCO₃ with ranitidine (150 mg twice daily) andgroup III (31 patients) received the same dose of CaCO₃ with omeprazole (20 mg once daily). Blood samples were collected monthly for six months during hemodialysis sessions.

Results: The obtained data revealed that, patients in group II showed marked increase in serum (PO₄) level at 2nd month extended for the whole study period 6 months. Stable serum level of calcium (Ca) and decreasedalkaline phosphatase (ALP), elevated serum parathyroid hormone (PTH) level was observed, while in group III, the results showed no significant change in serum level of Ca, PO₄, increased PTH, and significant decrease in serum ALP.

Abstract

Conclusion:

Co-administration of ranitidine with CaCO₃ may aggravate hyperphosphatemia. Co-administration of omeprazole with CaCO₃ reduced ALP and did not modulate PO₄, Ca and increased serum PTH.

Keywords: Ranitidine, Omeprazole, CaCO₃, Hyperphosphatemia, Hypocalcaemia.

Introduction

Maintenance of the normal homeostasis of calcium-phosphate in patients undergoing renal dialysis is a sophisticated problem particularly those receiving acid suppressive therapy (*Ganesh et al.*, 2001).

Abnormalities in calcium–phosphate balance develop early in the course of chronic kidney disease (CKD). A tight association has been observed between elevated serum phosphate, intact parathyroid hormone, Ca × P product, and mortality. These associations cannot be explained simply by osteodystrophy and its complications. It seems likely that, the relationship between calcium–phosphate balance and outcome of patients on dialysis can be explained to a large extent by the effect of the observed abnormalities on the cardiovascular system (*Block et al.*, 2004).

The clinical consequences of altered phosphorus and calcium metabolism and hyperphosphatemia include an increased risk of mortality, cardiovascular diseases (CVD), bone disease, and extraskeletal calcification of soft tissues, including blood vessels, lungs, kidneys, and joints (*Block and Port.*, 2000; Ganesh et al., 2001).

Although dietary phosphorus restriction and dialysis play important roles in regard to the management of hyperphosphatemia, the role of phosphate-binding therapies in this regard is still needed to be delineated (*Drueke*, 2001).

Phosphorus sequestering agents contain either calcium or aluminum. The use of the latter is limited by toxicity. Calcium containing agents may have potential for increasing calcium load and soft tissue calcification. The challenge in the renal failure patient is to reduce effectively and safely serum phosphorus and Ca x P product without increasing serum calcium levels and the likelihood of vascular calcification. It is in this context that metal-free, calcium-free phosphate binders may have an important role (*Block and Port.*, 2000; *Jono et al.*, 2000).

Introduction

In chronic renal failure and particularly end stage renal failure (ESRF), it is accompanied by digestive bleeding from gastroduodenal ulcers erosive gastritis, or esophagitis are frequent. The use of gastric acid inhibitors is the base for the preventive or curative treatment of these complications. A link has been reported between gastric hyperacidity and hyperphosphatemia in dialysis patients (*Nilas et al. 2008*).

The present study was designed to investigate the effect of ranitidine or omeprazole in combination with phosphate binder CaCO₃ versus phosphate binders alone CaCO₃ on the serum level of phosphorus in patients performing renal dialysis. As a trial to improve therapeutic outcome of CaCO₃ by co-administration with acid suppressive therapy.

The present study aimed to:

Study the effect of ranitidineor omeprazole in combination with aphosphate binder CaCO₃versus phosphate binder aloneCaCO₃ on the serum level of phosphorus in patients performing renal dialysis.