The Effect of Exposure to Electromagnetic Waves on Pregnancy

Thesis

Submitted for Fulfilment of Master Degree in Obstetrics & Gynecology

\underline{By}

Rabaa Rashad Abd EL Gawwad Helal

Resident of Obs. & Gyn. (El-Sahl Teaching Hospital)

Supervised by

Prof. Maged Ahmed Abd El-Raouf

Professor of Obstetrics and Gynecology Faculty of Medicine - Cairo University

Dr. Moutaz Mahmoud El-Sherbini

Lecturer of Obstetrics and Gynecology Faculty of Medicine - Cairo University

Dr. Ahmed Mahmoud Hussein

Lecturer of Obstetrics and Gynecology Faculty of Medicine - Cairo University

Faculty of Medicine - Cairo University
2015

Acknowledgment

First and foremost I gratitude to **ALLAH** for giving courage to complete this work. Without his blessing, I could not have completed this thesis.

I would like to thank Prof. Maged Ahmed Abd El Raouf, who was in real sense, my guide and supervisor, did not leave any stone unturned in completing this endeavor. He was constant source of inspiration and moving force behind this project. Without his help, it would not have been possible for me to carry out this herculean task.

I would like to thank **D..Moutaz Mahmoud El Sherbini**, who helped me immensely and gave his unending support and moral courage on daily basis in writing this manuscript.

Also, I would like to thank **D.**Ahmed Mahmoud Hussein, for his unconditioned help and advices throughout this work.

Last but not least, I would like to thank my family members, friends, colleagues and faculty members for their continuous encouragement and support.

RabaaRashadAbd El-Gawwad

Abstract:

Introduction: Several studies have looked into the safety of mobile phones in recent years with uncertain results. There is a growing body of evidence that exposure to high density microwaves can cause detrimental effects to the testis and eyes and induce significant biologic changes. The non-thermal effects of microwaves used in mobile phones has been controversial. There is no epidemiologic evidence today showing that occupational or daily life exposures to microwaves do any harm to human reproductive processes, but experimental animal studies have suggested that microwaves can produce intra-uterine effects including teratogenic effects.

Aim of the study: The present study aimed to assess the effect of electromagnetic waves of mobile phones on the fetal heart rate as well as fetal blood flow using the cardiotocography (CTG) monitoring and Doppler ultrasound evaluation.

Methodology: This prospective study included 90 pregnant females, 30 complicated with IUGR with mean gestational age of 34.6±0.85 wks, and 60 with normal pregnancy with gestational age of 36.25±0.75 wks. All patients included in the study were subjected proper full history taking, examination, CTG and Doppler examination.

Results: Results of the current study showed significant decrease in fetal kicks in group A compared to group B after cell phone use. No significant difference between study groups regarding CTG variability, acceleration and deceleration was observed.

Conclusion: Our results indicated that electromagnetic fields (EMFs) do not cause any demonstrable effects on baseline FHR, acceleration or deceleration. However, our results showed significant lowering of fetal kicks after cell phone use in both IUGR and normal pregnancy groups

Key words: cardiotocography (CTG), Doppler, electromagnetic fields (EMFs), fetal heart rate (FHR), intra uterine growth restriction (IUGR).

List of Abbreviations

AC	Abdominal Circumference
ACRBR	Australian Centre for Radiofrequency Bioeffects Research
AEDV	Absence of end diastolic velocity
AFI	Amniotic fluid index
AFV	Amniotic fluid volume
BPD	Biparietal diameter
CAI	Color amplitude imaging
CDE	Color Doppler energy
CTG	Cardiotocogram
CW	Continuous wave
DI	Doppler index
EFW	Estimated fetal weight
ELF	Extremely low-frequency
EMF	Electromagnetic field
FCC	Federal Communications Commission
FGR	Fetal growth restriction
FHR	Fetal heart rate
GA	Gestational age
HC	Head circumference
IARC	International Agency for Research on Cancer
IUGR	Intrauterine Growth Restriction
MCA	Middle cerebral artery
MFS	Maximum frequency shift
MI	Mechanical Index

MW	Microwaves
PI	Pulsatility index
PW	Pulsed wave
REDV	Reversal of end diastolic velocity
RF	Radio frequency
RFR	Radiofrequency radiation
RI	Resistance index
ROM	Ruptured membranes
SAR	Specific Absorption Rate
SCENIHR	European Commission Scientific Committee on Emerging
	and Newly Identified Health Risks
SGA	Small for gestational age
TCD	Transverse cerebellar diameter
TI	Thermal Index
U/S	Ultrasound
UA	Umbilical artery
2D	Two-dimensional

List of Tables

Table No.	Title	Page		
	Review of literature			
Table (1)	Categorization of CTG trace features into normal, intermediary, abnormal, and preterminal	29		
	Results			
<i>Table</i> (2)				
	Demographic data of IUGR group (group A)	66		
Table (3)	Doppler and CTG in IUGR group (A)	00		
Table (4)	Comparison between Doppler Resistant index before and after cell phone use in IUGR group	67		
	(A)			
Table (5)	Comparison between number of kicks before	67		
	and after cell phone use in IUGR group (A)			
Table (6)	Demographic data of normal pregnancy group	68		
	(group B)	00		
Table (7)	Doppler and CTG in normal pregnancy group	69		
	(B)			
Table (8)	Comparison between Doppler Resistant index			
	before and after cell phone use in normal	70		
	pregnancy group (B)			
Table (9)	Comparison between number of kicks before			
	and after cell phone use in normal pregnancy	70		
	group (B)			
<i>Table (10)</i>	Comparison between study groups regarding	71		
	demographic data	/1		
<i>Table (11)</i>	Comparison between study groups regarding	72		
	Doppler RI before and after cell phone use	, 2		
<i>Table (12)</i>	Comparison between study groups regarding	73		
	CTG findings	75		

List of Figures

Figures No.	Title	Page No.
Review of Literature		
Fig. (1)	Types of non-ionizing radiation	5
Fig. (2)	Normal reactive trace. (a) Accelerations; (b)	24
	normal variability	
Fig. (3)	Normal baseline rate, bradycardia, and	25
	tachycardia	
Fig. (4)	Sinusoidal pattern	26
Fig. (5)	Uniform (rounded pattern, shape is similar) -	26
	variable (rapid loss of beats, pattern may vary)	
	decelerations	
Fig. (6)	Early and late decelerations. For late	27
	deceleration the onset of contraction and drop in	
	FHR differs	•••
Fig. (7)	Uncomplicated and complicated variable	28
	deceleration. A deceleration of duration longer than 60 seconds is considered as complicated	
Fig. (8)	Principles of Doppler sonography	32
Fig. (9)	Modified Doppler Equation	32
Fig. (10)	Pulsed Doppler sonogram	33
Fig. (11)	Color Doppler flow mapping	34
Fig. (12)	Doppler indices estimated from the maximum	36
	frequency	
Fig. (13)	GA effect on umbilical arterial Doppler	42
F:~ (14)	frequency shift waveforms Normal Programmy Davidsonment of the	5 0
Fig. (14)	Normal Pregnancy - Development of the	59
T' (15)	umbilical artery	50
Fig. (15)	Abnormal development of the umbilical artery	59
Fig. (16)	Clinical guideline for the use of umbilical artery	60
	Doppler ultrasound in managing pregnancies	
	complicated with fetal growth restriction	

Figures No.	Title	Page No.
Results		
Fig. (17)	Comparison between number of kicks before	66
	and after cell phone use in IUGR group (A).	
Fig. (18)	Comparison between Doppler Resistant index	68
	before and after cell phone use in normal	
	pregnancy group (B)	
Fig. (19)	Comparison between number of kicks before	69
	and after cell phone use in normal pregnancy	
	group (B)	
Fig. (20)	Comparison between study groups regarding	70
	GA	
Fig. (21)	Comparison between study groups regarding	71
	Doppler RI before cell phone use.	
Fig. (22)	Comparison between study groups regarding	72
	number of kicks	

Table of Contents

Items	
Introduction	
Aim of the Work	
Review of Literature	
> Electromagnetic Radiation	4
> Cardiotocogram (CTG)	18
> Doppler Ultrasound	31
> Intrauterine Growth Restriction (IUGR)	44
Patients and Methods	
Results	
Discussion	
Conclusion and Recommendations	
Summary	
References	
Arabic Summary	

Introduction

Microwave ovens, satellites, and radio/TV transmission and mobile phone transmitters /receivers produce electromagnetic waves daily (*Khan M*, 2008).

As a matter of fact, we are exposed to electromagnetic waves apart from the occupational exposure with a frequency ranging from 300MHz to 300GHz (*Khan M*, 2008).

In addition, the common use of mobile phones has given rise to concerns about the potential influences of electromagnetic waves on human physiology (*Valberg PA*, *Van Deventer TE et al.*, 2007).

Worldwide use of mobile phones had been increased by the end of 2008 to about 4.1 billion; these users involve pregnant women also (*Valberg PA*, *Van Deventer TE et al.*, 2007).

Several studies have looked into the safety of mobile phones in recent years with uncertain results (*Valberg PA*, *Van Deventer TE et al.*, 2007).

There is a growing body of evidence that exposure to high density microwaves can cause detrimental effects to the testis and eyes and induce significant biologic changes involving the central nervous system, cardiovascular system, and hematopioetic system through thermal action (*Valberg PA*, *Van Deventer TE et al.*, 2007).

Meanwhile, the non-thermal effects of 915MHz microwaves used in mobile phones has been controversial (*Robert E*, 1999).

There is no epidemiologic evidence today showing that occupational or daily life exposures to microwaves do any harm to human.

There's experimental animal studies which have suggested that microwaves can produce intra-uterine effects including teratogenic effects (*Mazor R*, *Korenstein-llan A et al.*,2008).

THE AIM OF WORK

The present study aimed to assess the effect of electromagnetic waves of mobile phones on the fetal heart rate as well as fetal blood flow using the CTG monitoring and Doppler ultrasound evaluation.

Electromagnetic Radiation

Introduction

The electromagnetic environment consists of natural radiation and man-made electromagnetic fields that are produced either intentionally or as by-products of the use of electrical devices and systems(*Alekseev and Ziskin*, 2009).

The natural electromagnetic environment originates from terrestrial and extraterrestrial sources such aselectrical discharges in the earth's atmosphere and radiation from sun and space. Characteristic of naturalfields is a very broadband spectrum where random high peak transients or bursts arise over the noise-likecontinuum background. This natural background is orders of magnitude below local field levels producedby man-made RF-sources considered here(*Bahr et al.*, 2006).

The everyday use of devices and systems emitting radiofrequency (RF) electromagnetic fields is continuously increasing. Sources generating high levels of electromagnetic fields are typically found in medical applications and at certain workplaces(*Buccella et al.*, 2007).

Cellular mobile communication networks cause on average low levels of electromagnetic fields in areasaccessible to the general public. Handsets and cell phones, however, might cause significantly higherpeak levels of exposure during use(*Calabrese et al.*, 2006).

Electromagnetic radiation can be classified into two types: ionizing radiation and non-ionizing radiation, based on its capability of ionizing atoms and breaking chemical bonds. Ultraviolet and higher frequencies, such as X-rays or gamma rays are ionizing, and these pose

their own special hazards. By far the most common health hazard of radiation is sunburn, which causes over one million new skin cancers annually (*Alekseev and Ziskin*, 2009).

The non-ionizing radiation could be divided in terms of frequency to extremely low-frequency (ELF), radio frequency (RF) and microwaves (MW) frequencies (fig.1)(Krawczyk et al., 2008).

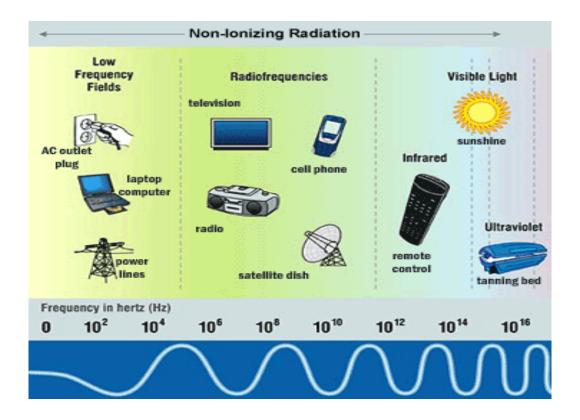


Figure (1): Types of non-ionizing radiation (Harper and Buress, 2008)

ELF radiation has very long wave lengths (on the order of a million meters or more) and frequencies in the range of 100 Hertz or cycles per second or less. While, radio frequencies have wave lengths of between 1 and 100 meters and frequencies in the range of 3 kHz to 300 MHz. However, the MWs have wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz and 300 GHz (*Pozar*, *1993*).

Microwaves are good for transmitting information from one place to another, because microwave energy can penetrate haze, light rain and snow, clouds, and smoke. The MW is electromagnetic field (EMF), can be considered as a combination between an electric field and a magnetic field. The electrical part is produced by a voltage gradient and is measured in volts/meter. The magnetic part is generated by any flow of current and is measured in Tesla(*Krawczyk et al.*, 2008).

The quantity used to measure how much EMF radiation is actually absorbed by the body is called the *Specific Absorption Rate* (SAR). The SAR is usually <u>expressed in units of watts per kilogram</u> (W/lcg) or milliwatts per gram (mW/g)(Harper and Buress, 2008).

Radiation can affect the body in many ways, and the health effects may not become apparent for many years. Theseeffects range from mild symptoms, such as skin reddening, to serious effects such as cancer and death. These effects are dependent upon the amount of radiation absorbed by the body (the dose), the type of radiation, whether or not the exposure was internal or external, and the length of exposed time (*Haddow et al.*, 2008).

The body attempts to repair the radiation damage, but sometimes the damage is too severe or widespread. Lapses may also occur in the body's natural repair process in its attempt to compensate for the damage caused by radiation (*NCRP*, 2007).

• Measurement

Both narrow-band (frequency selective) and broad-band instruments can be used for assessing exposureto RF fields. In selecting instrumentation it is necessary to consider a number of key factors that