

NOVEL PERFORMANCE EVALUATION STUDIES OVER EXTENDED GENERALIZED-K COMPOSITE FADING CHANNELS

By

Husam Rafiq Mahmoud Alhennawi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

NOVEL PERFORMANCE EVALUATION STUDIES OVER EXTENDED GENERALIZED-K COMPOSITE FADING CHANNELS

By Husam Rafiq Mahmoud Alhennawi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Hebat-Allah M. Mourad

Dr. Mahmoud H. Ismail

Professor of Communications

Associate Professor

Electronics and Communications Engineering
Faculty of Engineering, Cairo University

Electronics and Communications Engineering Faculty of Engineering, Cairo University

NOVEL PERFORMANCE EVALUATION STUDIES OVER EXTENDED GENERALIZED-K COMPOSITE FADING CHANNELS

By Husam Rafiq Mahmoud Alhennawi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

- Professor, Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014 Engineer's Name: Husam Rafiq Mahmoud Alhennawi

Date of Birth: 15/10/1988 **Nationality:** Palestinian

E-mail: h.alhennawi@gmail.com

Phone: 01154576999
Address: 6th of October
Registration Date: 1/10/2011
Awarding Date: -/-/---

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Dr. Hebat-Allah M. Mourad

Dr. Mahmoud H. Ismail

Examiners:

Prof. Dr. Salwa H. El-Ramly (External examiner)
Prof. Dr. Emad K. Al-Hussaini (Internal examiner)
Prof. Dr. Hebat-Allah M. Mourad (Thesis main advisor)

Dr. Mahmoud H. Ismail (Member)

Title of Thesis:

Novel Performance Evaluation Studies over Extended Generalized-K Composite Fading Channels

Key Words:

Extended Generalized-K; Symbol error rate; Cognitive radio; Probability of detection; Fox's *H*-function

Summary:

In this thesis, the performance of EGK is studied by offering unified and generic closed-form exact expressions for the symbol error rate of the EGK composite fading channels. In this context, the single as well as the maximal-ratio combining and equal-gain combining receivers are considered over most of the commonly used modulation schemes. Furthermore, a novel general expression for the average probability of detection of energy detection spectrum sensing is derived over the EGK fading. The new expression provides a unified form, which can handle several of the well-known fading environments.

Acknowledgements

First and foremost I would like to thank Allah, the Almighty, for giving me the strength and courage to do this work.

I would like to express my deepest appreciation to my supervisors Prof. Dr. Hebat-Allah Mourad and Dr. Mahmoud H. Ismail for their guidance, patience and continuous support. Their advice and feedback about this research have greatly enhanced and strengthened the work.

Finally, I would like to express my gratitude and respect to my great family for giving me unequivocal supports throughout my life. Without their support it might be impossible to complete this work to the end.

Dedication

This Master thesis is dedicated to my parents, my brother and my sister who have supported me all the way in my life and my study.

Table of Contents

Acknow	ledgements	i	
Dedicati	ion	ii	
Table of	Table of contents		
List of T	Tables	vi	
	Figures	vii	
	Abbreviations	ix	
List of S	Symbols	хi	
	et		
	er 1: Introduction	1	
1.1	Fading Distribution Models	1	
1.2	Cognitive Radio Systems	2	
1.3	Spectrum Sensing	3	
1.4	Performance metrics of Wireless Communication Systems	4	
1.5	Diversity Receptions	4	
1.6	Contributions of the Thesis	4	
1.7	Thesis Outline	5	
Chapte	er 2: Background and Literature Review	6	
2.1	Introduction	6	
2.2	Extended Generalized-K Distribution	6	
	2.2.1 EGK statistical model	6	
	2.2.1.1 The effects of the distribution parameters	7	
	2.2.2 The PDF and CDF of the instantaneous SNR	8	
	2.2.3 Performance Evaluation over the EGK Channel	10	
2.3	Energy Detection Based Spectrum Sensing	10	
2.5	2.3.1 Introduction	10	
	2.3.2 Spectrum Sensing Techniques	12	
	2.3.2.1 Matched filter detection	12	
	2.3.2.2 Cyclostationary feature detection	12	
	2.3.2.3 Energy detection	12	
	2.3.3 Review on Energy Detection in literature	14	
2.4	2.3.3 Review of Effetgy Detection in Interactine	15	
2.4	Some Generalized Special Functions		
2.5	Summary	17	
	er 3: Energy Detection over EGK Distribution	18	
3.1	Introduction	18	
3.2	Performance of Energy Detector	18	
3.3	Examples of special and limiting cases	20	

	3.3.1 \overline{P}_d for some limiting cases of EGK distribution	20
	3.3.2 \overline{P}_d for some special cases of EGK distribution	22
3.4	Cooperative Spectrum Sensing	23
	3.4.1 Performance of hard fusion rules over EGK model	23
3.5	SLS diversity reception	24
3.6	Numerical Results	25
	3.6.1 Complementary receiver operating characteristic for different cases	25
	3.6.2 Average probability of detection \overline{P}_d versus average SNR $\overline{\gamma}$	27
	3.6.3 Cooperative spectrum sensing effects	29
	3.6.4 Energy detection with SLS diversity reception	30
3.7	Summary	31
Chapte	er 4: Symbol Error Rate over EGK Distribution	32
4.1	Introduction	
4.2		
4.3	SER For The Single-Branch Receiver Over EGK Fading With Linear	
	Modulations	33
4.4	Limiting and Special Cases of the Generic Symbol Error Rate Expressions	38
	4.4.1 Limiting case of the proposed SER expressions	38
	4.4.2 Special case of the proposed SER expressions	39
4.5	Extension to Multi-Branch MRC and EGC Diversity Receivers	41
4.6	Numerical and Simulation results	49
	4.6.1 EGK distribution generation	49
	4.6.2 Single-branch receivers	50
	4.6.3 Multiple-branch receivers	53
4.7	Summary	55
Chapte	er 5: Conclusion and Future Works	56
5.1	Conclusions	56
5.2	Future works	57
List of l	Publications	58
Referen	ces	59
Annend	ices	65
Appen	dix A: Summary on Some Recent Fading Channel Models	66
A.I	The KG distribution	66
	A.1.1 The received signal envelope	66
4.2	A.1.2 The PDF and the CDF of the instantaneous SNR	66
A.2	The α - μ Distribution	66
	A.2.1 The received signal envelope	67 67
A.3		67
A.3	The κ-μ Distribution	67
	A.3.2 The PDF and the CDF of the instantaneous SNR	68
A.4	The η-μ Distribution	68
A. 4	A.4.1 The received signal envelope	68
	A.4.2 The PDF and the CDF of the instantaneous SNR	68
A.5	The EGK distribution	69
11.5	A.5.1 The received signal envelope	69
	A.5.2 The PDF of the SNR	69
	A.5.3 The CDF of the SNR	70

A.6	A.6 The Fox's H-distribution	
	A.6.1 The received signal envelope	70
	A.6.2 The PDF and the CDF of the instantaneous SNR	70
Append	ix B: Proofs of some formulas used in this thesis	71
B.1	Series expansion of <u>Pd</u> in AWGN channel	71
B.2	Liming formula for Pd,EGK	71
	Deriving the basic functions for the SER evaluation of the EGK limiting	
	cases	72
Append	ix C: MATHEMATICA Implementation of Fox's H-Function	74
Append	ix D: MATLAB Implementation of the Three Basic Functions in SEF Expressions	

List of Tables

Table2.1	Summary of statistical parameters of some special and limiting cases	
of E	GK distribution	7
Table2.2	The effect of changing the EGK distribution parameters on AF	9
Table2.3	Brief summary of the performance evaluation of EGK distribution in	
litera	ature	11
Table2.4	Main advantages and disadvantages of some spectrum sensing tech-	
niqu	es	14
Table2.5	Summary on the main literature for ED performance evaluation over	
basic	c fading channel models	15
Table2.6	Some recent proposed work for ED performance evaluation over	
gene	eric fading distributions	16
	u d	
Table4.1		
	ulation schemes	35
Table4.2	•	
	is thesis	36
	Final form of the SER (P _e) for the different modulation schemes	
	idered in this thesis.	38
	The Pe expressions for the limiting cases of EGK distribution assum-	
_	different modulation schemes	39
Table4.5	The P _e expressions in terms of H-function for different considered	
	ulation schemes assuming Nakagami-m fading model	40
	The P _e expressions for the different modulation schemes considered	
	is thesis assuming the KG fading model as a special case	40
	5	42
Table4.8	5 1	
	lin transform	44
	Basic $I_0(.)$ -functions for both MRC and EGC diversity recievers	45
Table4.10	Basic $I_1(.)$ and $I_2(.)$ -functions for both MRC and EGC diversity	
	ivers	46
	Final form of the P _e with MRC diversity reception for the different	
	ulation schemes considered in this thesis.	47
	Final form of the P _e with EGC diversity reception for the different	4.0
mod	ulation schemes considered in this thesis	48

List of Figures

Figure 1.1 Spectrum holes concept [17]	2
Figure 2.1 The variation of the EGK PDF pR(r) with respect to the fading shaping factor ξ and the shadowing shaping factor ξ_S , at 3dB envelopes: (i) $r = \sqrt{2\Omega}$, (ii) $r = \sqrt{\Omega}$ and (iii) $r = \sqrt{\Omega/2}$ [12]	8 13
Figure 3.1 Complementary ROC curves for different fading environments, SNR = 9 dB and u = 5	26
Figure 3.2 Complementary ROC curves for different composite fading environments, SNR = 9 dB and u = 5	27
factors $\{\xi_S, \xi\} = \{\underline{3}/2, 1\}$, and different fading figures $\{m_S, m\}$ values Figure 3.4 P_d versus γ for EGK composite fading with $P_f = 0.1$, $u = 2$, fading	28
figures $\{m_S, m\} = \{1, 3\}$, and different shaping factors $\{\xi_S, \xi\}$ values Figure 3.5 Complementary ROC curves for CSS with OR-Rule over EGK chan-	28
nels with $u = 2$, $\overline{\gamma} = 4dB$, $(m, \xi, m_S, \xi_S) = (2.5, 1, 3, 0.5)$ and n collaborating users	29
channels with $u = 2$, $\overline{\gamma} = 4dB$, $(m, \xi, m_S, \xi_S) = (2.5, 1, 3, 0.5)$ and n collaborating users.	30
Figure 3.7 Complementary ROC curves for SLS diversity scheme over EGK channels with $u = 3$, $\overline{\gamma} = 5 dB$, $(m, \xi, m_S, \xi_S) = (0.5, 1, 0.5, 1.5)$ and L diversity-branches.	31
Figure 4.1 SER results of CBFSK, DBPSK and QPSK modulation schemes	
over some limiting cases of EGK fading model	50
cases of EGK fading model	51
with fading figures: (a)m = 1, m _S = 1,(b)m = 2, m _S = 2, and (c)m = 5, m _S = 3. The shaping factors $\{\xi_S, \xi\} = \{1.5, 1\}$.	52
Figure 4.4 The performance of SER for 16-PSK, 16-QAM and 16-NCFSK with shaping factors: (a) $\xi = 0.25$, $\xi_S = 0.25$, (b) $\xi = 0.5$, $\xi_S = 0.25$, and	
(c) $\xi = 1.0$, $\xi_S = 0.75$. The fading figures $\{m, m_S\} = \{1, 5\}$ Figure 4.5 SER performance considering 16-ASK, 16-PSK, 16-QAM and 16-NCFSK modulation schemes with statistics parameters (m, ξ, m_S, ξ_S) :	52
(a) $(1,0.75,0.5,0.5)$, (b) $(1.5,1,1,0.75)$ and (c) $(2.5,1.5,2,1.25)$	53

Figure4.6	SER for a dual- and quad- branch MRC receivers employing 16-	
PSK a	and 16-QAM with $m = 1$, $\xi = 1.5$, $m_S = 3.5$ and $\xi_S = 2$	54
Figure4.7	SER for a dual- and quad- branch EGC receivers employing 16-ASK	
and 16	6-NFSK with m = 1, ξ = 1.5, m _S = 3.5 and ξ _S = 2	54

List of Abbreviations

AAF Amplify-and-Forward

ABEP Average Bit Error Probability

AC Average Capacity
AF Amount of Fading
AFD Average Fade Duration

ASEP Average Symbol Error Probability

ASK Amplitude Shift Keying
AUP Average Unified Performance

AWGGN Additive White Generalized Gaussian Noise

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying CAF Cyclic Autocorrelation Function

CBFSK Coherent Binary Frequency Shift Keying

CDF Cumulative Distribution Function
CFD Cyclostationary Feature Detection

CR Cognitive Radio

CSD Cyclic Spectral Density

CSS Cooperative Spectrum Sensing

DBPSK Differentially Binary Phase shift keying

DF Decode-and-Forward

DPSK Differentially coherent Phase shift keying

DSA Dynamic Spectrum Access

ED Energy detection
EGC Equal Gain Combining
EGK Extended Generalized-K

FC Fusion Center

FCC Federal Communications Commission

GG Generalized Gamma GNM Generalized Nakagami-m

i.i.d Independent and identically distributedi.n.i.d Independent and non-identically distributed

LOS Line-Of-Side MF Matched Filtering

MGF Moment Generating Function
MIMO Multiple-input Multiple-output
MISO Multiple-input Single-output
MRC Maximal-Ratio Combining

NCBFSK Non-Coherent Binary Frequency Shift Keying

NC-FSK Non-Coherent Frequency Shift Keying

NLOS Non Line-Of-Side

PAM Pulse Amplitude Modulation PDF Probability Density Function

PSK Phase Shift Keying PU Primary User

QAM Quadrature Amplitude Modulation

QoS Quality of Serves

QPSK Quadrature Phase shift keying RMSC Root Mean Square Combining ROC Receiver Operating Characteristic

RV Random Variable SC **Selective Combining SDR** Software Defied Radio **SER** Symbol Error Rate **SLC** Square-Law Combining SLS **Square-Law Selection** SNR Signal-to-Noise Ratio SS Spectrum Sensing

SSC Switch and Stay Combining

SSK Space Shift Keying SU Secondary User

List of Symbols

A, B and g	The modulation schemes parameters
c	The real constant that lies in the strip of definition
	of the Mellin-transform
E[.]	Expected value
$f^*(s)$	The Mellin transform of function $f(.)$
$f_{\gamma_l}(\gamma_l)$	The PDF of the l i.n.i.d instantaneous SNR, γ_l
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	where $l = 1, \dots, L$
$f_{\gamma}(\gamma)$	The PDF of the instantaneous SNR
$f_{\gamma}^{*}(\gamma)$	The Mellin transform of $f_{\gamma}(\gamma)$
$F_{\gamma}(\gamma)$	The CDF of the instantaneous SNR
$F_{\gamma_l}(\gamma_l)$	The CDF of the l i.n.i.d instantaneous SNR γ_l
$F_{\gamma}^{*}(\gamma)$	The Mellin transform of $F_{\gamma}(\gamma)$
$_{p}\overset{.}{F}_{q}$	The generalized hypergeometric function
$g^*(z)$	The Mellin transform of $g(\gamma) \equiv -\gamma \frac{d}{d\gamma} P(error \gamma)$
$G_{n,a}^{m,n}(.)$	Meiger's G-Function
$G_{p,q}^{m,n}(.) \ G_{p,q;p_1,q_1;p_2,q_2}^{0,n;m_1,n_1;m_2,n_2}(\gamma_1,\gamma_2)$	Bivariate <i>G</i> -Function
h	Channel gain
$h^*(z)$	The Mellin transform of $h(\gamma) \equiv P(error \gamma)$
$h^*(\mathbf{z})$	L-dimensional Mellin-transform of conditional
	SER
H_0	Primary user absence
H_1	Primary user presence
$H_{p,q}^{m,n}(.)$	Fox's H-Function
$H^{m,n}_{p,q}(.)$ $H^{0,n;m_1,n_1;\cdots;m_r,n_r}_{p,q;p_1,q_1;\cdots;p_r,q_r}(\gamma_1,\cdots,\gamma_r)$	Multivariable <i>H</i> -function
$I_{\nu}(.)$	Modified Bessel function of the first kind order
K_G	Generalized-K distribution
L	Number of branches in diversity reception
m	Fading figure(diversity severity/order) of EGK dis-
	tribution
m_l	Fading figure(diversity severity/order) of <i>l</i> -branch
	in EGK distribution
$m_{\scriptscriptstyle S}$	Fading shaping factor of EGK distribution
$m_{s,l}$	Fading shaping factor of <i>l</i> -branch in EGK distribu-
	tion
M[.]	The Mellin transform
$M^{-1}\{.\}$	The inverse Mellin transform
n	The number of collaborative users in CSS scenario
n(t)	zero-mean AWGN