

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Public Works Department

Simplified Approach for Water Hammer Analysis

A Thesis Submitted in Partial Fulfillment for the Requirements of the Degree of Masters of Science in Civil Engineering

(Public Works – Sanitary Engineering)

Prepared By

Shaimaa Said Abdou Alv

B.Sc. of Civil Engineering (Public Works) Ain Shams University, 2007

Supervised By

Prof. Dr. Mohamed Hassan Abdel Razik

Professor of Sanitary Engineering
Public Works Department
Faculty of Engineering
Ain Shams University

Dr. Mohamed Aly Fergala

Associate Professor of Sanitary Engineering Public Works Department Faculty of Engineering Ain Shams University

Dr. Sherien Aly Elagroudy

Associate Professor of Sanitary Engineering Public Works Department Faculty of Engineering Ain Shams University

Cairo - 2014

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Approval sheet

Simplified Approach for Water Hammer Analysis

By Shaimaa Said Abdou Aly

B.Sc. Civil Engineering, Ain Shams University, 2007 This thesis for M.Sc. degree had been approved by:

Name Signature

Prof. Dr. Mohamed El Sayed Basiouny

Prof. of Sanitary and Environmental Engineering Faculty of Engineering, Benha University

Prof. Dr. Fekry Halim Ghobrial

Prof. of Sanitary and Environmental Engineering Faculty of Engineering, Ain Shams University

Prof. Dr. Mohamed Hassan Abdel Razik

Prof. of Sanitary and Environmental Engineering Faculty of Engineering, Ain Shams University

Dr. Sherin Ali El-Agroudy

Prof. Associate of Sanitary and Environmental Engineering Faculty of Engineering, Ain Shams University

DEDICATION

I wish to dedicate this work to who suffered to educate, prepare, build capacity and help myself to be as I am,

TO

MY FATHER & MY MOTHER

Also thanks to

MY SISTERS & MY BROTHERS

For their encouragement and support to complete this work

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of

Engineering for the degree of M.Sc. in Civil Engineering. The work

included in this thesis was carried out by the author in the department

of Public Works, Faculty of Engineering, Ain Shams University from

2009 to 2014.

No part of the thesis has been submitted for a degree or qualification at

any other university or institution. The candidate confirms that the work

submitted is his own and that appropriate credit has been given where

reference has been made to the work of others.

Date / / 2014

Signature

Shaimaa Said Abdou Aly

ACKNOWLEDGMENT

First of all, thanks are due to Allah to whom any success in life is attributed.

The candidate is deeply gratefully to my supervisors **Prof. Dr. Mohamed Hassan Abdel Razik, Dr. Mohamed Aly Fergala** and **Dr. Sherein Aly El-Agroudy** Professors of Sanitary & Environmental Engineering, Faculty of Engineering, Ain Shams University, for their guidance, faithful supervision, helpful suggestions, great support, cooperation and help in thesis.

I would like to thank my parents, family, friends and course mates for their support and encouragement. Special thanks to my dear mother for her support, kindness and help, my dear father, dear siblings and relatives for all the love, all the support and all the kindness.

ABSTRACT

Name: Shaimaa Said Abdou Aly

Title: Simplified Approach for Water Hammer Analysis Institute: Faculty of Engineering, Ain Shams University

Specialty: Public Works, Sanitary& Environmental Engineering

This thesis aims to provide a practical and simplified approach for the analysis of water hammer phenomenon, develop the pressure transient envelops produced due to water hammer, asses the need for protection, and determine the size of protection device.

To conduct this study, a typical water supply system consisting of a pump and long transmission pipeline delivering to a terminal reservoir is proposed. About 500 runs are simulated on Bentley Hammer software to cover wide variation of physical and hydraulic parameters.

The results of simulation are used to develop a model for the pressure envelops along the pipeline profile and another model for sizing of the protection device needed to reduce the impact of water hammer.

Keywords: Transient Pressures, Water Hammer, Surge Protection Devices, Simplified Approach.

Supervisors:

Prof. Dr. Mohamed Hassan Abdel Razik Dr. Mohamed Aly Fergala Dr. Sherien Aly Elagroudy

Faculty of Engineering Summary for M.Sc. Thesis Prepared by

Eng. Shaimaa Said Abdou Aly

Titled

"Simplified Approach for Water Hammer Analysis "

Supervised by

Prof. Dr. Mohamed Hassan Abd ElRazik Associate Prof. Mohamed Aly Fergala Associate Prof. Sherien Aly Elagroudy

Water hammer is considered a catastrophic phenomenon which has a high impact on water supply system and network performance.

Water hammer analysis is very complex in handling the complicated equations or the determination of the required surge vessel for protection. This thesis aims to provide a simplified and practical approach for the analysis of Water Hammer phenomenon in order to assess the need for protection against this phenomenon, and estimate the volume of surge vessel.

To conduct this study, about 500 simulation runs have been applied on Bentley HAMMER computer software, to a water supply system covering a wide range of physical and hydraulic parameters as follows.

Parameters	Range		
Diameter (D) (mm)	300, 600, 900 and 1200		
Velocity (V) (m/s)	0.5, 1.0, 1.5, 2.0 and 2.5		
Wave Speed(a) (m/s)	300, 600, 900,1200 and		
wave speed(a) (III/s)	1500		
Demand and Pump	Depend on the velocity and		
Head (H)	diameter		
Dina langth (I) (m)	Longer than 4 x wave		
Pipe length (L) (m)	travel length		

The research conclusions were:

1. The direct relationship known as Joukowsky's equation is valid to approximately estimate the pressure drop at the pump.

$$\Delta H_1 = \pm \frac{a}{g} \Delta V$$

2. A new empirical formula is developed to calculate the maximum and minimum pressure envelops along the pipeline and to assess the need for protection.

$$\Delta H = \Delta H_1 \left[1 + \left(\frac{X}{L} \right) \right]^{0.35}$$

3. A new empirical model is developed to size the surge vessel.

$$V = 0.4D^5 H^{1.75}$$

After comparing the results of the simplified equations with those calculated by Bentley Hammer, it is proved that the proposed approach can be applied with ease and efficiency.

Table of Contents

CHAPTER 1 INTRODUCTION	1
1.1 Introduction	1
1.2 Problem Definition.	2
1.3 Research Objective	2
1.4 Thesis Organization	2
CHAPTER 2 LITERATURE REVIEW	4
2.1 Historical Background	4
2.2 Types of Transient Flow	5
2.3 Definitions	5
2.4 Common Causes of Water Hammer	5
2.5 Impact and Importance of Water Hammer	6
2.6 Simplification of Water Transient Concept	12
2.7 Pressure Changes Caused by instantaneous Change in Flow Velocity	
2.8 Velocity of Water Waves	13
2.9 Wave Velocity Values for Some materials	14
2.10 Water Hammer Mathematics	16
2.11 Water Hammer Software	22
2.12 Rigid and Elastic Water Column Theory	23
2.13 Transient Control	24
2.14 Numerical Solution And Computer Models	31
CHAPTER 3 METHODOLGY	34
3.1 General	34
3.2 Sequence of Events for Water Hammer	34

3.3 Methodology	. 37
3.4 Model Assumptions	. 38
3.5 Required Data for the simplified Approach	. 38
3.6 Model Calibration	. 39
CHAPTER 4 RESULTS AND DISCUSSIONS	. 40
4.1 General	. 40
4.2 Analysis Result	. 40
4.3 Results and Discussion	. 41
4.4 Pressure Envelops	. 46
4.5 The Sizing of Gas Volume for Hydropneumatic Tank	. 49
4.6 Conclusion	. 52
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS.	. 54
5.1 General	. 54
5.2 Conclusion	. 54
5.3 Limitation and Recommendations	. 56
REFERENCES	57

List of Figures

Figure 2.1: Common Causes of Water Transient6
Figure 2.2 : Transient Impact due to Water Hammer7
Figure 2.3: Shapes of Cavity (Chaudhry, 1987)8
Figure 2.4 : Different Effects of a Weekend Section8
Figure 2.5 : Impeller Cavitation Regions9
Figure 2.6 : Shapes of Collapse the Vapor Bubble9
Figure 2.7 : Column Separation (B.B Sharp, 1980)10
Figure 2.8 : Hydraulic Transient at Position x in the System12
Figure 2.9: Surge Wave speed Chart for Water15
Figure 2.10: Pressure variation at valve; friction losses neglect.16
Figure 2.11 : Pressure Variation at Valve; Friction Losses Considered
Figure 2.12: Characteristic Grid (Chaudhry, 1987)21
Figure 2.13 : Maximum Transient Head Envelope Calculated by RWCT and EWCT24
Figure 2.14 : Increasing Pump Inertia by Flywheel25
Figure 2.15: Pump Bypass26
Figure 2.16: One-Way Tank26
Figure 2.17 : Hydraulic Grade Line during Transient27
Figure 2.18: Surge Tank
Figure 2.19 : Air Chambers or Hydropneumatic Tank29
Figure 3.1 : Typical Pressure Envelops with and without Protection
Figure 4.1: Typical Water System41

Figure 4.2: Comparison of Pressure Drop Calculated by
Joukowsky's Equation and Bentley Hammer at Different Wave
Speeds and Pipe Diameters44
Figure 4.3 : Pressure Envelops without Protection48
Figure 4.4 : Gas Volume Required to Achieve Pressure Drop Reduction by Bentley Hammer and the Developed Equation50
Figure 4.5 : Pressure Envelops with Protection51
Figure 4.6 : Flow Chart of the Simplified Approach for Calculating Water Hammer
Figure 5.1 : Flow Chart of the Simplified Approach for Calculating Water Hammer55

List of Tables

Table 3.1: Variation of the Physical and Hydraulic parameters .41								
Table 4.1: Physical and hydraulic parameters 41								
			-	•	Joukowskys	-		•
Table	4.3:	Pressure	Drop	by	Joukowskys	Equation	and	by
Bentle	y Wat	er Hamme	er- Wit	hout	Protection			17

List of Acronyms

American Water Works Association AWWA Wave Speed a f Darcy-Weisbach Friction Factor Acceleration due to Gravity g Piezometric Head Η MoC Methods of Characteristics I Rotational Moment of Inertia K Bulk Modulus of Elasticity of the Liquid N Rotational Speed of Pump

INTRODUCTION CHAPTER ONE

CHAPTER 1 INTRODUCTION

1.1 Introduction

Hydraulic transients in closed conduits have been a subject of both theoretical study and intense practical for more than one hundred years. (*Ghidaoui et al, 2005*)

Transient flow is the transition from one steady state to another steady state in a fluid flow system. It occurs in all fluids, confined and unconfined and transition is caused by a disturbance to the flow. (*Parmakian*, 1963)

A water hammer is the rapid change in flow momentum in closed conduits causing elastic waves (pressure waves) that travel both upstream and downstream from the point of origin. The rapid change of the velocity converts the kinetic energy carried by the fluid into strain energy in the pipe walls causing a pulse wave of abnormal pressure to travel from the disturbance into pipe system. (*Karney et al*, 2005)

The pressure in the conduit behind these propagation waves is very rapidly increased or decreased with a velocity equal to the speed of sound in the fluid. The propagating pressure waves create both positive - and negative pressure higher or lower than the normal pressure any water system is designed to work in the normal condition.

Pump power failure is one of the most important causes of transient flow in water supply system which create negative pressure in several location that decrease the water supply performance.