Renal Failure and Renal Replacement therapy in Intensive Care Unit

Essay

Submitted for Partial Fulfilment of Master Degree On General Intensive Care

Bγ **Eslam Metwally Elsayed Elhendawy** *M.B.B.CH.* (Cairo University)

Supervised by

Dr. Gamal Eldin Mohammad Ahmad Elewa

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Mostafa Mansour Hussein

Lecture of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Dr. Gamal Eldin**Mohammad Ahmad Elewa, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am deeply thankful to **Dr. Mostafa**Mansour Hussein, Lecturer of Anesthesia,
Intensive Care and Pain Management, Faculty of
Medicine, Ain Shams University, for his great help,
active participation and guidance.

Last but not least, I would like to express my hearty thanks to all my family for their support till this work was completed.

Eslam Metwally

Contents

Title	Page No.
List of Abbreviations	5
List of Tables	10
List of Figures	11
Introduction	1
Aim of the Essay	3
Chapter (I): Acute Kidney Injury In Intensive Care: Causes and Diagnosis	4
Chapter (II): Prophylactic Measures to avoid Renal Failure In Intensive Care	66
Chapter (III): Management of Renal Failure in Intens Care and Renal Replacement Therapy Modal	
Summary	150
References	157
Arabic summary	

List of Abbreviations

Abb.	Full term
<i>AAAm</i>	ino Acids
ACD-AAci	d citrate dextrose-A
ACEAng	giotensin converting enzyme
ACTAct	ivated clotting time
ADHAnt	idiuretic hormone
ADQIAcu	te dialysis quality initiative
AINAcu	te interstitial nephritis
AKINAcu	te kidney injury network
ANAAnt	inuclear antibody
ANCAAnt	i neutrophil cytoplasmic antibodies
ANPAtr	ial natriuretic peptide
Anti-HIV AbAnt	i-human immunodeficiency virus antibody
<i>APTTAct</i>	ivated partial thromboplastin time
ARBAng	giotensin II receptor blocker
ARFAcu	tte renal failure
ATNAcu	te tubular necrosis
$BNPs$ β - ty	pe natriuretic peptide
BOLDBlo	od oxygen level dependent
CAVHDCor	ntinuous arteriovenous hemodialysis
CAVHDFCor	ntinuous arteriovenous hemodiafiltration
CAVHFCor	ntinuous arteriovenous hemofiltration
CEUSCor	ntrast enhanced ultrasound
CKDChr	ronic kidney disease
CPBCar	rdiopulmonary bypass
CPGClin	nical practice guidelines
CRIAKICre	atin increase AKI
CRP C rc	eactive protein
<i>CRRTCor</i>	ntinuous renal replacement therapy
CTDCor	nnective tissue disease
CVPCen	tral venous pressure

List of Abbreviations (cont...)

Abb.	Full term
CVVH	.Continuous venovenous hemofiltration
<i>CVVHD</i>	. Continous veno-venous hemodialysis
CVVHDF	.Continuous venovenous hemodiafiltration
	.Complement C3 and C4
DGF	.Delayed graft function
dsDNA	.Double stranded DNA
ECG	.Electrocardiography
<i>EDD</i>	.Extended daily dialysis
<i>EDDf</i>	.Extended daily dialysis with filtration
<i>EDTA</i>	.Ethylene diamine tetracetic acid
eGFR	.Estimated glomerular filtration rate
<i>EGPA</i>	. Eosinophilic granulomatosis with polyangiitis
ELISA	.Enzyme linked immunosorbent assay
<i>EMA</i>	.European Medicines Agency
<i>EN</i>	.Enteral nutrition
<i>ERBP</i>	.European renal best practice
ESRD	.Endstage renal disease
FDA	.Food and Drug Administration
<i>GBM</i>	.Glomerular basement membrane
<i>GFR</i>	.Glomerular filtration rate
<i>GN</i>	. Glomerulone phritis
<i>GPA</i>	.Granulomatosis with polyangiitis
<i>GST</i>	$. Glut athione ext{-}S ext{-}transfer as e$
<i>HA</i>	.Human albumin
HCT	Hematocrit
HD	.Hemodialysis
HDF	. He modia filtration
HES	Hydroxy ethyl starch
HIT	.Heparin induced thrombocytopenia

List of Abbreviations (Cont...)

Abb.	Full term
HIV	.Human immunodeficiency virus
HUS	.Hemolytic uremic syndrome
HV-HF	.High volume hemofiltration
<i>ICU</i>	.Intensive care unit
<i>IDMS</i>	.Isotope dilution mass spectrosocopy
<i>IgA</i>	.Immunoglobulin A antibodies
<i>IGFBP7</i>	.Insulin like growth factor binding protein 7
<i>IgG</i>	. Immunoglobulin G antibodies
<i>IgM</i>	.Immunoglobulin M antibodies
<i>IHD</i>	.Intermittent hemodialysis
<i>IL</i>	.Interleukin
<i>IRRT</i>	.Intermittent renal replacement therapy
<i>I.V</i>	.Intravenous
<i>KD</i>	.KILODALTON
<i>KDIGO</i>	.Kidney disease improving global outcome
<i>KIM-1</i>	.Kidney injury molecule-1
Kt/V	.K: Dialyzer clearance of urea, t: Dialysis time and V: Volume of distribution of urea
L-FABP	Liver type fatty acid binding protein
<i>LMWHs</i>	.Low molecular weight heparins
<i>MDRD</i>	.Modified diet in renal disease
<i>MI</i>	.Myocardial infarction
<i>MPO</i>	.Myeloperoxidase
MRA	.Magnetic resonance angiography
<i>MRI</i>	.Magnetic resonance imaging
<i>MW</i>	.Molecular weight
<i>NAC</i>	.N-acetyl cystiene
NCRIAKI	.Non-creatin increase AKI
NGAL	.Neutrophil gelatinase-associated lipocalin

List of Abbreviations (cont...)

Abb.	Full term
nGST	n glutathione S-transferase
<i>NICE</i>	National Institute of Health and Care
	Excellence
<i>NSF</i>	Nephrotoxic systemic fibrosis
<i>NSTEMI</i>	Non-ST elevation myocardial infarction
<i>OD</i>	Optical density
PCA-MRI	Phase contrast angiography-MRI
<i>PEEP</i>	Positive end expiratory pressure
PF4	Platelet factor 4
<i>PIRRT</i>	Prolonged (daily) intermittent renal
	replacement therapy
	Parenteral nutrition
PO	
PR3	
	Pyridoxine-5'phosphate
<i>RA</i>	Renal angina
<i>RAAS</i>	Renin angiotensin aldosterone system
<i>RAI</i>	Renal angina index
<i>RCT</i>	$ Randomized\ controlled\ trial$
<i>RI</i>	$Resistive\ index$
RIFLE	Risk, injury, failure, loss, endstage kidney disease
<i>ROS</i>	Reactive oxygen species
<i>RPGN</i>	Rapidly progressive glomerulonephritis
<i>RRT</i>	Renal replacement therapy
SCUF	$ Slow\ continuous\ ultrafiltration$
<i>SD</i>	Standard deviation
SID	Strong ion difference
<i>SIG</i>	Strong ion gap

List of Abbreviations (cont...)

Abb.	Full term
<i>SLE</i>	Systemic lupus erythematosus
<i>SLED</i>	Sustained low efficiency dialysis
<i>SLEDD</i>	Slow extended daily dialysis
<i>STEMI</i>	ST elevation myocardial infarction
<i>TIMP-2</i>	Tissue inhibitor of metalloproteinases
<i>TJRB</i>	Transjugular renal biopsy
<i>UF</i>	Ultrafilt ration
<i>UFH</i>	Unfractionated heparin
<i>UKM</i>	Urea kinetic modeling
<i>URR</i>	Urea reduction ratio
5HT	5-hydroxytryptamine

List of Tables

Table No.	Title Page	No.
Table (1):	Kidney disease improving global outcome (KDIGO) classification	6
Table (2):	The renal angina index (RAI) score	
Table (3):	The most common causes of acute kidney	
Table (b).	injury	
Table (4):	Diagnostic tests to distinguish between	12
14610 (1)	prerenal and renal acute kidney injury	13
Table (5):	Incidence of causes of hospital-acquired AKI	
Table (6):	Predisposing factors and chronic diseases	
	associated with AKI	17
Table (7):	Classical urinary indices in AKI due to pre-	
	renal causes and intrinsic disease	34
Table (8):	Specific AKI investigations for detection of	
	possible systemic diseases	
Table (9):	Expectations of novel AKI biomarkers	40
Table (10):	AKI biomarkers in human studies	42
Table (11):	Ultrasound characteristics of specific kidney	
	diseases in B-mode	
Table (12):	Color Doppler for a semi-quantitative	
	evaluation of intra-renal vascularisation	
Table (13):	Major risk factors for AKI	
Table (14):	Benefits and drawbacks of earlier RRT in	
T.11 (4.7)	critically ill patients with AKI.	
Table (15):	Absolute and relative indications for starting	
T 11 (10)	RRT in critically ill patients with AKI	84
Table (16):	Techniques suitable for renal replacement	100
m 11 (15)	therapy in acute kidney injury	108
Table (17):	The "4 Ts" scoring system to estimate	
	probability for heparin induced	
	thrombocytopenia, prior to laboratory testing for HIT antibodies	100
Table (18):	Recommended doses of anticoagulants for	122
1 anie (10):	CDDT	195

List of Figures

Fig. No.	Title Pag	e No.
Fig. (1):	Proposed algorithm to aid in clinical decision making on when to initiate RRT in critically il patients with AKI.	1

Introduction

cute kidney injury (AKI) is the abrupt loss of kidney function, resulting in the retention of urea and other nitrogenous waste products and the dysregulation of extracellular volume and electrolytes. The term AKI has largely replaced acute renal failure (ARF), reflecting the recognition that smaller decrements in kidney function that do not result in overt organ failure are of substantial clinical relevance and are associated with increased morbidity and mortality. The term ARF is now reserved for severe AKI, usually implying the need for renal replacement therapy (*Palevsky et al., 2013*).

Acute kidney injury has emerged as a major public health problem that affects millions of patients worldwide and leads to decrease survival and increase progression of underlying chronic kidney diseases. Patients in particular those in the Intensive Care Unit (ICU) are dying of AKI and not just simply with AKI. Even small changes in serum creatinine concentrations are associated with a substantial increase in the risk of death. Acute Kidney Injury is not a single disease but rather a syndrome comprising multiple clinical conditions. Outcomes from AKI depend on the underlying disease, the severity and duration of renal impairment, and the patient's renal baseline condition (*Singbart and Kellum*, 2012).

Acute tubular necrosis (ATN) is the primary cause of AKI. The rates of AKI have been reported in hospitalized patients to be between 3.2% - 20%, and rises in ICUs up to

Renal Failure and Renal Replacement Therapy in Intensive Care Unit

22% and even to 67% depending on population studied and the definition used (Murugan et al., 2011).

Impairment of kidney function requires special attention in ICUS, because if multi organ failure affects the kidney, it carries a greater risk for worse outcome and furthermore survivors have higher risk than normal population for chronic renal failure. They also have higher mortality and morbidity rates compared to normal population (Kellum and Ronco, 2011).

During the acute stage of renal failure, renal replacement therapy (RRT) is the mainstay of therapy. Adequacy of dialysis is likely to be linked to better outcome. Various modalities of RRT are available. Continuous RRT using convective methods are preferred in sepsis-induced ARF, especially in hemodynamically unstable patients. Early initiation of RRT is probably advantageous, although the optimal timing of dialysis is yet unknown. Higher doses of RRT are more likely to be beneficial (*Rajapakse et al.*, 2010).

Substantial progress has been made toward understanding the mechanisms whereby sepsis is associated with a high incidence of acute renal failure. Recent investigations in animals and humans suggest that, the effect of CRRT in sepsis may increase survival in patients with sepsis—associated ARF. Moreover, recently identified clinical investigations may decrease the occurrence of ARF and sepsis and the associated high mortality (Simmi et al., 2011).

Renal Failure and Renal Replacement Therapy in Intensive Care Unit

AIM OF THE ESSAY

o, the aim of this essay was to highlight the updates in terminology and classifications of acute kidney injury (AKI), with the possible causes encountered in intensive care and the updates in diagnosis of AKI and the possible modalities of management of such patients in intensive care.

Acute Kidney Injury In Intensive Care: Causes and Diagnosis

cute kidney injury (AKI) is a clinical syndrome representing a sudden decline of renal function leading to the decrease of glomerular filtration rate (GFR) (Bellomo et al., 2012b). This "conceptual" definition has been utilized for many years in place of a more precise and universally accepted classification: Currently, objective parameters such as urine output and creatinine levels have been included into the so-called KDIGO (Kidney Disease: Improving Global Outcomes) definition (Kellum and Lameire, 2013). This recent innovation into clinical practice of AKI is improving uncertainties in epidemiology and clinical management. However, still the literature reports that AKI incidence and mortality varies widely (incidence ranges 1–31 % and mortality ranges 28–82%) (Lameire and Kellum, 2013).

This depends on the fact that often patients with different characteristics and severity of renal dysfunction are included in the analyses. Furthermore, AKI etiology and patient clinical condition strongly affect outcome, moving mortality rate from 20 % of the cases with isolated AKI with minimal or absent comorbidities to 80 % in case of AKI associated with severe sepsis or septic shock. Hence, in the description and evaluation of AKI in the clinical context, it becomes very important to diagnose this pathology with a consensus definition, to exactly