

تبيكة المعلومات الجامعية

CLEVIN TENNY CONTROLLER

ثبكة المعلومات الجامعية

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها عني هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار في درجة حرارة من 15 - 20 منوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

ثبيكة المعلومات الجامعية

بعض الوثنائق الأصلية تالفة

Eigenvalue distribution of integral operators defined by Sobolev-Orlicz kernels

Thesis
Submitted for the degree
of
Doctor of Philosophy in Science
(Pure Mathematics)

Presented by Maamoun A. E. Faragallah

B

Supervised by

7001

E.El-Shobaky H.König
Ain Shams Uni. Kiel Uni.
Entropol U-shabele Heman Konj

Submitted to
Departement of Mathematics
Faculty of Science
Ain Shams University
CAIRO,EGYPT

Acknowledgement

It is my pleasure to express my deepest gratitude and thanks to professor Dr. H.König,professor of Mathematics at Kiel University and professor Dr. E.Elshobaky,professor of Mathematics at Ain Shams University,who read the manuscript in the original form. Their many suggestions helped to improve the thesis. Also I wish to express my hearty thanks for suggesting the topic of the thesis and their critical remarks.

During the writing of this thesis I had the opportunity to visit several mathematical departements and to use their libraries. Among others, I am indebted to the Mathematical Institute in Kiel. Last, but not least, I obtained a great deal of support from my home Ain Shams University in Cairo.

I wish to express my special thanks to Dr. M.Junge, Kiel University.

Contents

1.	Chapter I :Introduction	1
	(a) Imbedding result for L_p -spaces	2
	(b) Convolution	3
	(c) Some special functions	4
	(d) Lorentz spaces and L_p -spaces	7
	(e) Besov and Sobolev spaces	12
	(f) Orlicz spaces	19
	(g) (p,q) -summing operators	26
	(h) s-numbers of operators	32
2.	Chapter II :Interpolation spaces	39
	(a) Classical interpolation methods	40
	i. The Riesz-Thorin theorem	40
	ii. The Marcinkiewicz theorem	42
	(b) Couples of spaces	44
	(c) The real interpolation method	47
	i. The K-method	47
	ii. The J-method	49
	(d) Interpolation of L_p -spaces	57
	(e) Interpolation of Lorentz spaces	60
	(f) Interpolation of vector-valued sequences spaces	61
	(g) Interpolation of Sobolev and Besov spaces	62
	(h) Interpolation of Schatten classes	63
	(i) Interpolation of (p,q) -summing operators	66

3.	Chapter III: Eigenvalue of integral operators I	69
	(a) Eigenvalues of compact operators in Hilbert spaces	70
	(b) Eigenvalues of operators on Banach spaces	72
	(c) Eigenvalues of p-summing operators	73
	(d) Eigenvalues distribution of integral operators I	75
4.	Chapter IV: Eigenvalue of integral operators II	83
	(a) The Gustavsson-Peetre interpolation method	84
	(b) The Fernandez-Garcia interpolation method	86
-	(c) Interpolation of $L_p(X)$ -spaces	90
4	(d) Besov-Orlicz and Sobolev spaces	98
	(e) Schatten-Orlicz classes	102
	(f) The eigenvalue distribution of integral operators II	104
5.	References	111

Preface

It is our aim to demonstrate the great importance of the method of abstract operator theory to applications within the theory of integral operators. We apply the results on the eigenvalues of abstract operators on Banach spaces to determine the asymptotic distribution of the eigenvalues of integral operators in function spaces.

Why should one study integral operators? The traditional answers are that integral equations have important applications outside of mathematics, and that they are the proper extension to analysis of the concepts and methods of the classical algebraic theory of the linear equations. A third possible answer is that the theory of integral operators is the source of all modern functional analysis and remain to this day a rich source of non-trivial examples.

The integral operators T usually map larger function spaces X (e.g. L_p - spaces) into smaller ones Y (e.g. Sobolev spaces W_p^s or Besov spaces B_{pq}^s). Usually the imbedding map I from Y into X belongs to one of the classes of Riesz operators. Since they have the ideal property, i.e. are stable under compositions with other operators. Hence the integral operator IT in X belongs to the same class and hence the eigenvalue results are applicable to IT.

In recent years, there has been emerged a new field of study in functional analysis: The theory of interpolation spaces. Interpolation theory has been applied to other branches of analysis (e.g. partial differential equations, numerical analysis, approximation theory). We want to use the real interpolation method to improve estimates of eigenvalues of integral operators defined by Sobolev-Orlicz kernels.

The asymptotic distribution of the eigenvalues of operators on function spaces defined by kernels usually depends on regularity properties and summability properties of the kernel, the smoother the kernel, the faster the eigenvalues tend to zero. It is shown in the books of König [K4] as well as Pietsch [P6] how to apply the theory of snumbers and of p-summing operators together with interpolation of

operators to give the precise asymptotics for the eigenvalues of kernels which belong to vector-valued Besov-spaces $B_{p,q}^{s_0}(B_{u,v}^{s_1})$, i.e. different smoothnesses in any of the two variables.

Since then, the real interpolation method has been generalized to interpolation theory with function parameter $(X_0, X_1)_{\rho,p}$ instead of $(X_0, X_1)_{\theta,p}$, replacing t^{θ} by some concave function ρ , see Gustavsson-Peetre [GP] and Fernandez-Garcia [FG 2]. The new method is particular well-suited to interpolation of Besov-Orlicz spaces $B^s_{\Phi,q}$.

The main aim of this thesis is to combine both methods to find optimal results for the asymptotic distribution of the eigenvalues of integral operators defined by kernels belonging to vector-valued of Besov-Orlicz spaces $B_{\Phi,q}^{s_0}(B_{\Psi,v}^{s_1})$ of the type that the eigenvalues belong to some Lorentz-Orlicz space $l_{\Phi,q}$ and find the best space of this type. The thesis consists of four chapters:

CHAPTER 1:

We collect the basic concepts and notations and some theorems which will be used in the subsequent chapters.

CHAPTER 2:

In this chapter we study the interpolation theory with function parameter. Next we study the interpolation of Lorentz spaces, Sobolev and Besov spaces, Schatten classes and (p,q)-summing operators. CHAPTER 3:

Since our work is based on the distribution of the eigenvalues of integral operators on function spaces defined by kernels, we present the results on the eigenvalues of abstract operators on Banach spaces to determine the asymptotic distribution of the eigenvalues of integral operator T in function spaces Z.In particular we study kernels belonging to some vector-valued L_p -space(e.g. vector-valued Sobolev or Besov spaces).

CHAPTER 4:

We derive some lemmas and theorems for estimating the eigenvalues of integral operators between the Besov-Orlicz and the Sobolev-Orlicz spaces.

Finally, we give a good estimation for the eigenvalues of integral operators defined by kernels belonging to vector valued Besov-Orlicz spaces $B_{\Phi,\sigma}^{s_0}(B_{\Psi,v}^{s_1})$.

Chapter 1 Introduction

Chapter 1

Introduction

In this introductory chapter we summarize some well known definitions and explain certain terminology used throughout this thesis. Also this chapter contains the definition and elementary properties of the Lorentz-sequence spaces $l_{p,q}$, the Besov spaces $B_{p,q}^s$, the Sobolev spaces W_p^s , the Orlicz spaces L_{Φ} and the (p,q)-summing operators $\Pi_{p,q}$. Further, the s-numbers of operators in Besov spaces is contained.

We use standard notations: $\mathbb{N}, \mathbb{Z}, \mathbb{R}$ and \mathbb{C} for the natural, integer, real and complex numbers respectively. We let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. The Banach spaces will be abbreviated by X, Y, Z and sometime by A, B. By operators we mean continuous linear operators between Banach spaces. The space of continuous linear operators T from X to Y under the operator norm:

$$\|T\| \ := \ \sup \big\{ \|Tx\|_Y \ : \|x\| = 1 \big\},$$

is denoted by L(X,Y). The topological dual of X is denoted by X^* i.e.

$$X^* = L(X, \mathbb{K})$$
 , $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\},$

and the duality pairing written (x, x^*) or $x^*(x), x \in X, x^* \in X^*$. The dual of the operator T is denoted by T^* . For $1 \le p \le \infty$ we denote by p^* the conjugate index defined by

$$\frac{1}{p} + \frac{1}{p^*} = 1 \qquad , 1 \le p^* \le \infty$$

Let Ω be a domain in the real Euclidean N - space \mathbb{R}^N and X be a (real or complex) Banach space. Then $C(\Omega; X)$ is the collection of all

vector- valued bounded and continuous functions on Ω , equipped with the norm

$$||f||_{C(\Omega;X)} = \sup_{x \in \Omega} ||f(x)||_X.$$
 (1.1)

Let $k \in \mathbb{N}$, then

$$C^{k}(\Omega;X) = \{ f \in C(\Omega;X) : D^{\alpha}f \in C(\Omega;X), |\alpha| \le k \}$$
 (1.2)

are Banach spaces equipped with the norm

$$||f||_{C^k(\Omega;X)} = \sum_{|\alpha|=k} ||D^{\alpha}f||_{C(\Omega;X)}$$
 (1.3)

where $\alpha = (\alpha_1, \ldots, \alpha_N)$ with $\alpha_j \in \mathbb{N}_0$, $j = 1, 2, \ldots, N$ is a multiindex, $|\alpha| = \sum_{i=1}^N \alpha_i$ and

$$D^{\alpha}f(x) = \frac{\partial^{\alpha}f(x)}{\partial x_{1}^{\alpha_{1}}\cdots\partial x_{N}^{\alpha_{N}}}, x \in \Omega.$$

Furthermore, dx stands for the Lebesgue measure in \mathbb{R}^N , and

$$||f||_{L_p(\Omega;X)} = \left(\int_{\Omega} ||f(x)||_X^p dx\right)^{1/p}, 0$$

with the usual modification

$$||f||_{L_{\infty}(\Omega;X)} = \sup_{x\in\Omega} ||f(x)||_{X}.$$

If $X \in \{\mathbb{R}, \mathbb{C}\}$ we have the scalar- valued case.

1.1 Imbedding result for L_p -spaces

Theorem 1.1.1 Suppose that vol $(\Omega) = \int_{\Omega} dx < \infty$ and $1 \le p \le q \le \infty$. Then $L_q(\Omega) \subset L_p(\Omega)$ with

$$||f||_{L_p(\Omega)} \leq (vol(\Omega))^{\frac{1}{p}-\frac{1}{q}} ||f||_{L_q(\Omega)}.$$

Proof: Let $f \in L_q(\Omega), 1 \leq q \leq \infty$, then

$$\int_{\Omega} |f(x)|^p dx \leq \left(\int_{\Omega} |f(x)|^q dx \right)^{p/q} \left(\int_{\Omega} dx \right)^{1-\frac{p}{q}}$$