NUMERICAL INVESTIGATION FOR SMOKE SPREAD IN AN UNDERGROUND SUBWAY STATION

By

Eng. Mahmoud Amer Ahmed Abdel Fattah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the
Degree of MASTER OF SCIENCE
In

MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2014

NUMERICAL INVESTIGATION FOR SMOKE SPREAD IN AN UNDERGROUND SUBWAY STATION

 $\mathbf{B}\mathbf{y}$

Eng. Mahmoud Amer Ahmed Abdel Fattah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the
Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING
Under the Supervision of

Prof. Dr. Essam E. Khalil Hassan Khalil
Prof. Dr. Mahmoud Ahmed Fouad
Dr. Esmail Mohamed Ali El-Bialy

Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2014

NUMERICAL INVESTIGATION FOR SMOKE SPREAD IN AN UNDERGROUND SUBWAY STATION

By

Eng. Mahmoud Amer Ahmed Abdel Fattah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the
Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Osama Ezzat Abdel-Latif

Member

Prof. Dr. Samy Morad Morcos

Member

Prof. Dr. Essam E. Khalil Hassan Khalil

Thesis Advisor and Member

Prof. Dr. Mahmoud Ahmed Fouad

Thesis Advisor and Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA – EGYPT

2014

Engineer: Mahmoud Amer Ahmed Abdel Fattah

Date of Birth: 05 / 12 / 1988
Nationality: Egyptian

E-mail: Mahmoud_Amer@eng.cu.edu.eg

Phone: 01060886120

Address: Gizeret El Warak, El Warak, Giza, Egypt

Registration Date: 01 / 10 / 2011

Awarding Date: / /

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil Hassan Khalil

Prof. Dr. Mahmoud Ahmed Fouad Dr. Esmail Mohamed Ali El-Bialy

Examiners: Prof. Dr. Osama Ezzat Abdel-Latif

Prof. Dr. Samy Morad Morcos

Prof. Dr. Essam E. Khalil Hassan Khalil Prof. Dr. Mahmoud Ahmed Fouad

Title of Thesis: NUMERICAL INVESTIGATION FOR SMOKE SPREAD IN AN UNDERGROUND SUBWAY STATION

Key Words: Subway Train Fire, Plug-holing, Visibility, FDS

Summary:

Smoke is the most fatal factor in the event of subway fire because smoke spreads in direction coincide with passenger's evacuation path. It reduces visibility and can cause fatalities by asphyxiation. This research presents a numerical study of smoke spread in underground subway station. This research investigates the effect of exhausting smoke by single point extraction and exhausting smoke by multi-point extraction on smoke spread inside the station, plug-holing phenomenon and passengers' life safety. Also, effect of adding smoke barriers at stairs entrance on smoke spread inside the station, plug-holing phenomenon and passengers' life safety is studied. Evacuation time is predicted for different combustion model and different number of people. Fire Dynamics Simulator (FDS) software version 5.5.3 is utilized to simulate 9 case studies in 150 m long, 20 m wide and 13 m height domain with a subway car fire source simulated as a fire with a unsteady heat release rate of 35 MW resulted from burning Heptane as a fuel. Results show that exhausting smoke by multipoint extraction system in underground subway station gives better performance than single point extraction system. By increasing the distance between vents in multipoint extraction system, plugholing phenomenon is reduced, smoke spread is reduced and tenable conditions improves at human level. Smoke barrier addition to ventilation system has a great effect on the efficiency of smoke extraction, plugholing reduction and tenable conditions improvement at human level.

ACKNOWLEDGMENT

Firstly, I would like to thank Almighty ALLAH, whom I owe everything, for His generousness and support through all my life.

I would like to thank Prof. Essam E. Khalil, Prof. Mahmoud A. Fouad and Dr. Esmail Mohamed Ali El-Bialy for their guidance, unremitting encouragement and distinctive supervision. I am grateful to them, and to all my respectful professors, for mentoring me throughout my undergraduate and graduate study.

I extend my gratitude to Prof. Ahmed Medhat for his valuable discussions. I would like to thank Eng. Shady Ali and Eng. Ayman Bayomy for answering some questions about FDS. Thanks are also to my colleagues and friends for their encouragement and support.

Finally, I owe a lifelong debt to my parents and my brothers for their motivation through finishing this thesis and their patience and care and for maintaining a perfect environment for study and research.

TABLE OF CONTENTS

ACKN	OWL	EDGMENT	V
TABLE	E OF	CONTENTS	vi
LIST C	F TA	BLES	ix
LIST C	F FI	GURES	X
NOME	NCL	ATURE	xiv
Greek l	Letter	S	XV
Superso	cripts	and Subscripts	xvi
Abbrev	iation	ns	xvii
ABSTI	RACT		.xviii
1. IN	TRO	DUCTION	1
1.1.	Gei	neral	1
1.2.	His	torical Overview of Subway Fires	2
1.3.	The	e Hazards of Smoke	3
1.3	3.1.	Toxicity	4
1.3	3.2.	High Temperatures	4
1.3	3.3.	Reduce Visibility	4
1.4.	Sm	oke Management	4
1.4	l.1.	Objectives of Smoke management	5
1.4	1.2.	Plug-holing	6
1.5.	Ope	eration Modes of Subway System	7
1.6.	Typ	bes of Ventilation in Subway station	7
1.6	5.1.	Natural Ventilation	7
1.6	5.2.	Mechanical Ventilation	8
1.6	5.3.	Emergency Ventilation	8
1.7.	Me	thods of Analysis	9
1.7	7.1.	Algebraic Equations	9
1.7	7.2.	Zone Fire Modeling	9
1.7	7.3.	CFD Modeling	10
1.7	7.4.	Scale Modeling	10
1.8.	Coı	nputer Modeling and Simulation	11
1.9.	The	e objective of this work	11

2.	LITER	ATURE REVIEW	12
2.1.		fect of platform screen doors (PSD) and ventilation on passenger's life safe	-
2.2.		fe safety evacuation for cross interchange subway station fire	
2.3.	O	otimization of emergency ventilation mode	17
2.4. tuni		esearch on the phenomenon of plug-holing under mechanical smoke exhaus	
2.5. con	junction	umerical study on the optimization of smoke ventilation mode at the area between tunnel track and platform in emergency of a train fire at sub-	-
		udia nafamad a El Dabas matus station	
2.6.	St	udies performed on El- Behoos metro station	34
3.	GOVE	RNING EQUATIONS	35
3.1.	De	escription of FDS	35
	3.1.1.	Hydrodynamic Model	35
	3.1.2.	Combustion Model	35
	3.1.3.	Radiation Transport	35
3.2.	Go	overning Equations	36
	3.2.1.	Mass and Species Transport	36
	3.2.2.	Momentum Transport	36
	3.2.3.	Energy Transport	37
	3.2.4.	Equation of State	37
3.3.	Vi	sibility	38
3.4.	La	rge Eddy Simulation (LES)	38
3.5.	Ev	vacuation of Agents	39
	3.5.1.	Human Movement Model	40
	3.5.2.	Fire and Human Interaction	42
3.6.	Co	ombustion (Mixture Fraction Model)	43
3.7.	Ra	ndiation (Radiation Transport Equation)	44
3.8.	Tł	ne Heat Conduction Equation for a Solid	46
3.9.	Ra	adiation Heat Transfer to Solids	46
3.10). Co	onvective Heat Transfer to Solids	47
4.	VALII	DATION AND GRID SENSITIVITY ANALYSIS	48
4.1.	Va	alidation of FDS	48
	4.1.1.	Channel description	48
	412	Fire source	48

	4.1.3.	Ceiling Jet Temperature Measurements	48
	4.1.4.	Carbon monoxide concentration measurement	50
	4.1.5.	FDS simulations	50
	4.1.6.	FDS Simulation Results	51
4.2.	Co	emputational Domain and Grid Sensitivity analysis	53
	4.2.1.	Simulation Results	56
	4.2.2.	Simulation cases of the present study	59
5.	RESUI	TS AND DISCUSSION	62
5.1.	Re	sults of case 1	62
5.2.	Re	sults of case 2	65
5.3.	Re	sults of case 3	65
5.4.	Re	sults of case 4	70
5.5.	Re	sults of case 5	70
5.6.	Re	sults of case 6	75
5.7.	Ov	rerview	78
	5.7.1.	Amount of extracted soot by ventilation system	78
	5.7.2.	Smoke layer height	79
	5.7.3.	Velocity distribution	80
5.8.		fect of ventilation single point extraction and multipoint extraction	
COII	5.8.1.	Visibility	
	5.8.2.	Temperature distribution	
	5.8.3.	Carbon monoxide concentration	
	5.8.4.	Velicty distribution	
5.9.		nulation of people evacuation	
	5.9.1.	Results of case 7	
	5.9.2.	Results of case 8.	
	5.9.3.	Results of case 9	
6.	CONC	LUSIONS AND SUGGESTED FUTURE WORK	97
6.1.	Co	nclusions	97
6.2	. Su	ggested future work	97
7	REFER	PENCES	QQ

LIST OF TABLES

Table 1.1: A few examples of fire accidents in subway systems [2]	3
Table 1.2: Tenability criteria given by NFPA 130 [5]	4
Table 2.1: Shows the four cases that were performed by Roh et al [9]	13
Table 2.2: Two evacuation scenarios studied by Yanfeng et al [10]	16
Table 2.3: Simulation results of evacuation scenario 1 [10]	17
Table 2.4: Simulation results of evacuation scenario 2 [10]	17
Table 2.5: Simulation cases [11]	19
Table 2.6: The fire power and exhaust rate in simulations [12]	23
Table 2.7: The critical exhaust rate and the smoke temperature [12]	25
Table 2.8: The interface temperature calculated by N-percentage rule and the	
corresponding critical exhaust rate [12]	25
Table 2.9: Summary of different ventilation modes [17]	31
Table 4.1: Dimensions of the station basements	53
Table 4.2: Cases carried out for sensitivity analyses	55
Table 4.3 : Simulation cases of the present study	60

LIST OF FIGURES

Figure 1.1: Three lines of Cairo metro [1]
Figure 1.2: Smoke management concept [4]5
Figure 1.3: Illustration of Plugholing phenomenon [6]6
Figure 1.4: Tunnel Ventilation Shaft [7]8
Figure 1.5: Difference between real fire and idealized zone model fire [6]10
Figure 2.1: The geometry of subway station used by Roh et al [9]12
Figure 2.2: Plane view of the vent location in ventilation systems [9]13
Figure 2.3: Visibility contour in Case A: (a) 50 s, (b) 100 s, (c) 200 s, (d) 300 s and (e)
500 s [9]
Figure 2.4: Visibility contour in Case B: (a) 50 s, (b) 100 s, (c) 200 s, (d) 300 s and (e)
500 s [9]
Figure 2.5: Visibility contour in Case C: (a) 50 s, (b) 100 s, (c) 200 s, (d) 300 s and (e)
500 s [9]
Figure 2.6: Visibility contour in Case D: (a) 50 s, (b) 100 s, (c) 200 s, (d) 300 s and (e)
500 s [9]
Figure 2.7: Schematic diagram of a subway interchange station [10]16
Figure 2.8: Smokes exhaust systems [11]
Figure 2.9:Three-dimensional model [11]
Figure 2.10: Comparison of temperature field of UO mode (#1) and OTE mode (#2) [11]
20
Figure 2.11: Comparison of the visibility field under UO mode (#1) and OTE mode (#2)
[11]20
Figure 2.12: Comparison of the temperature field under the smoke exhaust mode (#3) and
the air supply mode (#4) of the platform ventilation system [11]21
Figure 2.13: Comparison of the visibility under the smoke exhaust mode (#3) and the air
supply mode (#4) of the platform ventilation system [11]
Figure 2.14: Comparison of vertical profiles of temperature [11]22
Figure 2.15: Comparison of vertical profiles of visibility [11]
Figure 2.16: Model configuration of the tunnel [12]
Figure 2.17: The sketch of smoke exhaust process [12]
Figure 2.18: Smoke layer thickness measured by different methods [12]25

Figure 2.19: Temperature profiles measured under the vent [12]	26
Figure 2.20: The temperature field of HRR 10 MW [12]	27
Figure 2.21: Critical Froude number [12]	27
Figure 2.22: A schematic drawing of the subway station [17]	28
Figure 2.23: Photos and schematic drawings of full-seal PSD and half-height safety do	or.
(a) Full-seal PSD. (b) Half-height safety door [17]	29
Figure 2.24: Plane view of the smoke control systems at subway station and PSD. (a)	
Lobby air supply system. (b) Platform air supply system, platform exhaust system, OT	ΓE,
and TVF. (c) UPE and PSD [17]	30
Figure 2.25: Temperature contour at the cross-sectional of y= 0 m for full-seal PSD [1	
Figure 2.26: Visibility contour at z= 2 m above the platform floor for full-seal PSD [1]	7]
Figure 2.27: Visibility contour at z= 2 m above the platform floor for half-height safet	y
door [17]	33
Figure 3.1: The concept of the social force [26]	
Figure 3.2: The shape of the human body [26]	40
Figure 4.1: Dimensions of the full scale test channel [34]	49
Figure 4.2: Variation of HRR with time as measured by Hu et al [34]	49
Figure 4.3: Simulation domain grids	50
Figure 4.4: Geometry of the model	51
Figure 4.5: Comparison of temperature variation between simulation and experimental	1
results	51
Figure 4.6: Comparison of CO concentration variation between simulation and	
experimental results	52
Figure 4.7: Comparison of Travel time of smoke flow along the channel between	
simulation and experimental results	53
Figure 4.8 : Subway station configuration (the left half) [18]	54
Figure 4.9: Computational domain	55
Figure 4.10: The modeled Geometry	55
Figure 4.11: Comparison for ceiling jet temperature	56
Figure 4.12: Layer Height at Basement 1	57
Figure 4.13: Layer Height at Basement 3	57

Figure 4.14: Visibility at platform center, z=2m	58
Figure 4.15: CO concentration at platform center, z=2 m	58
Figure 4.16: Position of the planes	59
Figure 4.17: Position of vents in different cases	61
Figure 4.18: HRR curve used in fire simulation [36]	61
Figure 5.1: Visibility contours at y=10 m (case 1)	63
Figure 5.2: Temperature contours at y=10 m (case 1)	64
Figure 5.3: Visibility contours at y=10 m (case 2)	66
Figure 5.4: Temperature contours at y=10 m (case 2)	67
Figure 5.5: Visibility contours at y=10 m (case 3)	68
Figure 5.6: Temperature contours at y=10 m (case 3)	69
Figure 5.7: Visibility contours at y=10 m (case 4)	71
Figure 5.8: Temperature contours at y=10 m (case 4)	72
Figure 5.9: Visibility contours at y=10 m (case 5)	73
Figure 5.10: Temperature contours at y=10 m (case 5)	74
Figure 5.11: Illustration of smoke barrier position	75
Figure 5.12: Visibility contours at y=10 m (case 6)	76
Figure 5.13: Temperature contours at y=10 m (case 6)	77
Figure 5.14: Amount of soot exhausted cases 2,3,4,5 and 6	78
Figure 5.15: Smoke layer height at Basement 1	79
Figure 5.16: Smoke layer height at Basement 3	80
Figure 5.17: Velocity contours at y=10 m for cases 1, 2,3,4,5 and 6	81
Figure 5.18: Visibility contours at Z=1.8 m for cases 1, 2,3,4,5 and 6	82
Figure 5.19: Visibility contours at Z=11.8 m for cases 1, 2,3,4,5 and 6	83
Figure 5.20: Temperature contours at Z=1.8 m for cases 1,2,3,4, 5 and 6	84
Figure 5.21: Temperature contours at Z=11.8 m for cases 1, 2,3,4,5 and 6	85
Figure 5.22: Co concentration at Z=1.8 m for cases 1,2,3,4, 5 and 6	86
Figure 5.23: Co concentration at Z=11.8 m for cases 1,2,3,4, 5 and 6	87
Figure 5.24: Velocity contours at Z=1.8 m for cases 1, 2,3,4,5 and 6	88
Figure 5.25: Simulation results of people evacuation for case 7	89
Figure 5.26: Number of occupants with Evacuation time case 7	90
Figure 5.27: The FED values for the occupants in case 7	90
Figure 5.28: Simulation results of people evacuation for case 8	91

Figure 5.29: Number of occupants with Evacuation time case 8	92
Figure 5.30: The FED values for the occupants in case 8	92
Figure 5.31: Simulation results of people evacuation for case 9	93
Continue Figure 5.31: Simulation results of people evacuation for case 9	94
Figure 5.32: Number of occupants with Evacuation time for case 9	95
Figure 5.33: The FED values for the occupants in case 9	95
Figure 5.34: Predicted number of dead people in case 9	96
Figure 5.35: Co concentration at z=11.8 m at time 784 s	96

NOMENCLATURE

Symbol	Quantity
C	Constant
C_s	Smagorinsky constant (LES)
c_p	Constant pressure specific heat
c_s	Solid material specific heat
T_0	Ambient temperature
D	Diffusion coefficient, Dilution parameter
F	Froude number
f_b	External force vector
g	Acceleration of gravity
h	Enthalpy; heat transfer coefficient
Ι	Radiation intensity
I_b	Radiation blackbody intensity
I_n	Radiation intensity integrated over the band n
$I_{b,n}$	Radiation intensity of black body integrated over the band n
k	Thermal conductivity; suppression decay factor
K	Light extinction coefficient
K _m	Mass extinction coefficient
L	Length scale
$\dot{m}_{b,\alpha}^{\prime\prime\prime}$	Mass production rate of species a by evaporating droplets/particles
$\dot{m}_{\alpha}^{\prime\prime\prime}$	Mass production rate of species a per unit volume
p	Pressure
\overline{p}_{m}	Background pressure of m th pressure zone
Pr	Prandtl number
Q	Total heat release rate
ġ″	Heat flux vector
ġ‴	Heat release rate per unit volume

q̈'' Convective flux to a solid surface

q̈'' Radiative flux to a solid surface

R Universal gas constant

r Radial distance from the impinging point of the plume into the ceiling

Re Reynolds number

s Unit vector in direction of radiation intensity

S Visibility, m

Sc Schmidt number

S_{ij} Symmetric rate of strain tensor

T Temperature

t Time

U (u,v,w) Velocity vector, Integrated radiant intensity

W Molecular weight of the gas mixture

 W_{α} Molecular weight of gas species α

x (x, y, z) Position vector

 X_{α} Volume fraction of species α

 Y_{α} Mass fraction of species α

y_s Soot yield

Z Mixture fraction

Z_f Stoichiometric value of the mixture fraction

Greek Letters

 δ_{ii} Kronecker delta, = 1 for i = j and = 0 for i \neq j

 σ_s Scattering coefficient

 τ_{ij} Viscous stress tensor

χ_r Radiative loss fraction

∇ Gradient

ε Dissipation rate

κ Absorption coefficient