

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electrical Power & Machines Department

GENERATION EXPANSION PLANNING FOR THE EGYPTIAN POWER SYSTEM CONSIDERING THE ROLE OF THE NUCLEAR ENERGY

A Thesis

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Submitted By

Mohammed Moustafa Abd-Elzaher

B.Sc. of Electrical Engineering Benha University, 2006

Supervised By

Prof. Dr. Sohier M M Sakr
Electrical Power & Machines Department
Ain Shams University

Prof. Dr. Salem M Elkhodry
Electrical Power & Machines Department
Ain Shams University

Dr. Hassan M Mahmoud

Egyptian Electricity Holding Company

Cairo - 2012

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electrical Power & Machines Department

GENERATION EXPANSION PLANNING FOR THE EGYPTIAN POWER SYSTEM CONSIDERING THE ROLE OF THE NUCLEAR ENERGY

Submitted By

Mohammed Moustafa Abd-Elzaher

A Thesis Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Approved By Signature

Prof. Dr. Alsaid Abdelaziz Othman

Electrical Power & Machines Department Al-Azhar University

Prof. Dr. Almoataz Yousif Abdelaziz

Electrical Power & Machines Department Ain Shams University

Prof. Dr. Sohier M M Sakr

Electrical Power & Machines Department Ain Shams University

Prof. Dr. Salem M Elkhodry

Electrical Power & Machines Department Ain Shams University

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electrical Power & Machines Department

GENERATION EXPANSION PLANNING FOR THE EGYPTIAN POWER SYSTEM CONSIDERING THE ROLE OF THE NUCLEAR ENERGY

Submitted By

Mohammed Moustafa Abd-Elzaher

A Thesis Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Supervised By Signature

Prof. Dr. Sohier M M SakrElectrical Power & Machines Department
Ain Shams University

Prof. Dr. Salem M ElkhodryElectrical Power & Machines Department
Ain Shams University

Dr. Hassan M MahmoudEgyptian Electricity Holding Company

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in

Electrical Engineering (Electrical Power & Machines Department).

The work included in this thesis was carried out by the author at the Electrical Power &

Machines Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt in

collaboration with the Egyptian Electricity Holding Company.

No part of this thesis was submitted for a degree or a qualification at any other university or

institution.

Name

: Mohammed Moustafa Abd-Elzaher

Signature

:

Date

: / /

CURRICULUM VITAE

Name of the Researcher	: Mohammed Moustafa Abd–Elzaher
Date of Birth	: 21 October 1984
Place of Birth:	: Qalyoubia – Egypt
First University Degree:	: B.Sc. in Electrical Engineering
Faculty:	: Shoubra Faculty of Engineering
Name of University:	: Benha University
Date of Degree:	: July 2006
Position:	: Strategic Planning Engineer – EEHC
Technical Committees Membership:	: Member in the Council on Large Electric Systems (CIGRE)
E-mail:	: Engmmzaher2006@yahoo.com
Signature:	:
Date:	: / /

Acknowledgment

Thanks God for a lot of merits that led to successful completion of this work.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Sohier M M Sakr,** Electrical Power & Machines Department, Faculty of Engineering, Ain Shams University, for her supervision, helpful advice and valuable guidance throughout the course of this work.

My deep thanks to **Prof. Dr. Salem M Elkhodry**, Electrical Power & Machines Department, Faculty of Engineering, Ain Shams University, for his supervision, helpful advice and valuable guidance throughout the course of this work.

My thanks are extended to **Dr. Hassan M Mahmoud**, Head of the IT sector, Egyptian Electricity Holding Company.

I would like to thank the staff of Strategic Planning Sector in Egyptian Electricity Holding Company mainly, **Eng. Fatma Maayouf**, Head of the Strategic Planning sector for her sincere help and support.

My family, mother, father and my sister, I would like to present this work for you, without your support I would not have accomplished.

Abstract

The Egyptian power system is facing major challenges that may limit its growth in the future and affect its important role in the Egyptian economy. Over the last years, the rapid growth in the electricity demand has forced the country to depend heavily on its fossil fuel resources to meet this growth. On the other hand, Egypt may have insufficient fuel resources to meet the future demand growth. Also, the increase in the price of fossil fuels and increasing concerns about the related environmental effects limits the usage of these fuels for power generation.

To address these challenges, this thesis reviews the historical trends of the Egyptian energy system in terms of energy supply, demand, prices and the production of green house gases. The thesis then forecasts the future values for these trends up to year 2030. For the power sector, the thesis prepares electricity demand forecast for the study period up to year 2030. The thesis proposes a wide range of advanced supply side and demand side options to mitigate the effect of the previous challenges on the power sector. The proposed supply side options include nuclear power plants and hybrid renewable & thermal technologies in addition to the traditional supply technologies such as combined cycle and steam power plants. For the demand side options, the thesis proposes the introduction of Demand Side Management (DSM) efficient lighting programs as an effective way of controlling the growth in electricity demand.

The thesis performs preliminary calculations to assess the feasibility of these options in the future electricity generation mix of Egypt. The thesis then uses a more sophisticated generation expansion planning model to prepare a Business As Usual (BAU) generation expansion scenario for the Egyptian power system. This scenario assumes that Egypt will still depend on the traditional electricity generation options to meet the future increase in the electricity demand with no introduction of advanced supply side or demand side options to its electricity generation mix during the study period.

The thesis then prepares different expansion scenarios for the proposed advanced supply and demand side options to assess its future role in the power system and also to determine the optimum share of these technologies. Another group of scenarios is prepared using the IRP methodology to integrate the previous options into an integrated supply and demand side energy mix.

All these scenarios are compared against the BAU expansion scenario in terms of system cost changes, reduction in the CO₂ emission and fuel consumption. The Enhanced energy mix

will correspond to the scenario that achieves the maximum saving in system costs, fuel consumption and emissions. Results show that, by the end of the study period, nuclear power should be expanded to generate 12.4% of the generated energy while hybrid wind technology generates 15% by the end of the study period. On the other hand, efficient lighting programs should be applied with target annual load reduction of 5% during the same period. Applying this energy mix will decrease the cost of the system by 5% from the base case, reduce the fuel consumed to operate the new units installed in the study period by about 12% and decrease GHG emissions by also 12% compared to base case.

The results of these scenarios mayn't provide a final answer to the expected challenges however, the recommended energy mix will help to decrease the effect of these challenges on the power sector. The results of these scenarios will also provide in depth assessment to the previous proposed supply and demand side options and its optimum share in the long run generation mix of Egypt up to 2030.

Contents

Title	Page
List of Figures	
List of Tables	
List of Abbreviations	
Introduction	1
Chapter 1 Literature Review	
1-1- Integrated Resource Planning (IRP)	4
1-2- Demand Side Management (DSM) and Energy Efficiency	6
1-3- Nuclear Power	10
1-4- Hybrid Renewable Energies	18
1-5- General Comments about the Previous Work	22
Chapter 2 Load and Energy Forecasting	
2-1- Introduction	23
2-2- Forecasting Techniques	23
2-2-1 Time Series Models	24
2-2-2 Econometric Models	25
2-2-3 End-Use Models	27
2-3- Load Forecasting	28
2-4- Mathematical Model Testing	29
2-5- Load Duration Curve (LDC)	29
2-6- Load Forecast Program	30
2-7- Practical Case Study for the Egyptian Power System	31
2-7-1 Data Collection	32
2-7-2 Historical Data Analysis	33
2.7.2.1 Time Based Load Analysis	33 37
2.7.2.2 Sectoral Sales Load Analysis 2.7.2.3 Total System Losses	38
2.7.2.4 System Load Factor	39
2-8- Load Forecast Scenarios up to 2030	39
Chapter 3 Energy Efficiency & DSM Programs	
	41
3-1- Introduction 3-2- What is Demand-Side Management	41 41
3-2- What is Demand-Side Management 3-3- DSM and IRP	43
3-4- DSM Program Overview	43
3-4- DSM Flogram Overview 3-5- DSM in Egypt	45
3-6- Current DSM Programs in Egypt	45

3-7- Facts about the Targeted Sectors	46
3-7-1 Residential Lighting	46
3-7-2 Public Lighting	47
3-8- Specific Objectives of the Program	47
3-8-1 Residential Lighting	47
3-8-2 Public Lighting	47
3-9- Program Design	48
3-9-1 Residential Lighting	48
3-9-2 Public Lighting	48
3-10- Program Evaluation	48
3-10-1 Residential Lighting	49
3-10-2 Public Lighting	50
3-10-3 All Programs	50
3-11- Effect of the Program on the System Load Pattern and Demand Forecast	51
3-11-1 Effect on the Hourly Load Pattern	51
3-11-2 Effect on Annual Load & Energy Forecasts	55
3-11-3 Calculation Procedure	55
Chapter 4 Current &Future Situation of the Egyptian Energy Sector	
4-1Introduction	58
4-2 Current Situation	58
4-2-1Primary Energy Demand	58
4-2-2 Oil Reserves	58
4.2.3 Oil Production	59
4.2.4 Oil Demand	59
4.2.5 Oil Balance	59
4.2.6 Gas Reserves	60
4.2.7 Gas Production	61
4.2.8 Gas Demand	61
4.2.9 Gas Exports	62
4.2.10 Sectoral Analysis	63
4.2.11 Electricity	64
4.2.12 Renewable Energies	66
4.2.12.1 Wind power	66
4.2.12.2 Solar power	68
4.2.13 Nuclear Energy	68
4.2.14 Energy Pricing in Egypt	69
4.2.15 Reducing Green House Gases	70
4.2.15.1Global Situation	71
4.2.15.2 Situation in Egypt	72
4.2.15.3 The Effects of Climate Change on Egypt	72
4.2.15.4 The KYOTO Protocol and the Clean Development Mechanism	73
4.2.15.5 CDM Requirements	75
4.2.15.6 Carbon Markets and CDM	75
4.2.15.7 The Carbon Market Today	75
4.2.15.8 CDM and Nuclear Energy	76

4.3 Future Situation	78
4.3.1Primary Energy Demand	78
4.3.2 Oil Production	79
4.3.3 Oil Demand	81
4.3.4 Oil Balance	82
4.3.5 Gas Production	84
4.3.6 Gas Demand	84
4.3.7 Updated Gas Demand Forecasts	86
4.3.8 Gas Exports	87
4.3.9 Gas Balance	87
4.3.9.1 IEA Reference Supply Scenario	88
4.3.9.2 IEA Deferred Supply Scenario	89
4.3.10 Energy Pricing in Egypt	91
4.3.10.1 Future Oil Prices	91
4.3.10.2 Distillate and Heavy Fuel Oil Prices	92
4.3.10.3 Natural Gas Prices	92
4.3.11 Updated Fuel Price Estimations	94
4.3.11.1 Distillate and Heavy Fuel Oil Prices	94
4.3.11.2 Natural Gas Prices	94
4.3.12 Impact on the Electricity Sector	95
4.3.13 Reducing Green House Gases	96
4.3.13.1 The Carbon Market in the Future	96
4.4 Conclusion	97
Chapter 5 Future Generation Expansion Plans for the Power Sector	
5.1. Introduction	99
5.2. Planning Methodology	99
5.3 Planning Model Description	102
5.4. Demand Forecast	104
5.5. Supply-Side Options	104
5.6. Demand- Side Options	106
5.7. Generation Cost Comparison	107
5.8. Study Assumptions	109
5.8.1 Existing Generation Capacity	109
5.8.2 Economic Assumptions	109
5.8.3 Environmental Assumptions	109
5.8.4 Reliability Assumptions	110
5.9 Base Case Scenario	111
5.10 Base Case Results	112
5.11 Study Scenarios Description	115
5.12 Simulation Results	115
5.13 Analysis of the Results	117
5.13.1 Hybrid Wind Scenarios	117
5.13.2 DSM Scenarios	121
5.13.3 Nuclear Power Scenarios	125
5.13.4 IRP Scenarios	132
5.14 Egypt Enhanced Energy Mix up to 2030	140

Chapter 6 Conclusions and Recommendations

6-1- Conclusion	144
6-2- Recommendations for the Future Work	146
References	147
Appendix	

List of Figures

Figure P	age
Chapter 2	
Fig (2.1) Load duration curve	30
Fig (2.2) Flow chart for the forecasting process	31
Fig (2.3) Peak load evolution during the period (1981/1982-2007/2008)	33
Fig (2.4) Annual growth rate the energy consumption and peak load (1986/1987-2007/2008)	34
Fig (2.5) Hourly load profile of the peak load day for the period (2003/2004-2007/2008)	34
Fig (2.6) Load duration curve for the year 2007/2008	35
Fig (2.7) Monthly peak load trend during the period (1986/1987 – 2007/2008)	35
Fig (2.8) Curve fitting for the historical peak load of June month	35
Fig (2.9) Seasonal demand profile during 2007/2008	36
Fig (2.10) Variation of daily peak load with respect to daily maximum temperature for the	
working days of June 2008	36
Fig (2.11) Evolution of the correlation factor for summer months during the	
period (2006-2008)	37
Fig (2.12) Evolution of the energy consumption of different sectors (1986/1987-2007/2008)	38
Fig (2.13) Total system losses evolution (1986/1987-2007/2008)	38
Chapter 3	
Fig (3.1) DSM load shape objectives	42
Fig (3.2) DSM role in the IRP process	43
Fig (3.3) DSM program design process	44
Fig (3.4) Average daily load pattern for summer	51
Fig (3.5) Average daily load pattern for winter	51
Fig (3.6) Residential lighting saving pattern for summer	52
Fig (3.7) Residential lighting saving pattern for winter	52
Fig (3.8) Public lighting saving pattern for summer	53
Fig (3.9) Public lighting saving pattern for winter	53
Fig (3.10) Total saving pattern for summer	53
Fig (3.11) Total saving pattern for winter	54
Fig (3.12) Effect of the lighting program saving pattern on daily load pattern for summer	54
Fig (3.13) Effect of the lighting program saving pattern on daily load pattern for winter	54
Fig (3.14) Annual load saving for different DSM scenarios	57
Fig (3.15) Annual energy saving for different DSM scenarios	57
Chapter 4	
Fig (4.1) Evolution of oil reserves in Egypt through the period (2004-2008)	59
Fig (4.2) Egypt gas reserves rank in the African countries (2008)	60
Fig (4.3) Egypt gas Reserves rank along the Arab countries (2008)	61

Fig (4.4) Evolution of total gas exports in Egypt (2004-2008)	62
Fig (4.5) Gas consumption for the different consuming sectors in fiscal year 2007/2008	64
Fig (4.6) Evolution of installed capacity by type (1980/1981- 2007/2008)	65
Fig (4.7) Evolution of gas share in electricity sector (1990/1991 - 2007/2008)	66
Fig (4.8) Evolution of energy subsidies share in the total government subsidies	
(2005/2006-2008/2009)	69
Fig (4.9) share of domestic price and subsidy in actual costs of various petroleum	
products (2007/2008)	70
Fig (4.10) Egypt's GHG emissions by sector for year 2008	72
Fig (4.11) World types of CDM projects up to April 2006	74
Fig (4.12) Expected annual CERs from registered projects in year 2007	74
Fig (4.13) Global carbon market trading volumes and values (2006-2008)	76
Fig (4.14) World primary energy consumption and GHG emissions in year 2002	76
Fig (4.15) The effect of carbon tax on levelized generation cost of the different	
power generation options in many countries (10% discount rate)	78
Fig (4.16) Results of the 5.6% primary energy demand projection along with	
the IEA projection up to year 2030	79
Fig (4.17) IEA & OPEC oil production forecast scenarios (2010 – 2030)	80
Fig (4.18) Results of ECES oil production forecast scenario up to year 2030	80
Fig (4.19) Results of IEA oil demand forecast in the period (2003-2030)	81
Fig (4.20) Results of the study and IEA oil demand projections up to 2030	82
Fig (4.21) Egypt oil balance up to 2030 under IEA Reference scenario	82
Fig (4.22) Results of the BMI oil balance up to year 2019	83
Fig (4.23) ECES oil balance up to 2025	83
Fig (4.24) Forecasted gas production in IEA Reference & Deferred scenarios up to 2030	84
Fig (4.25) IEA gas demand forecast in Reference scenario up to 2030	85
Fig (4.26) IEA gas demand forecast against actual Consumption (2003-2008)	85
Fig (4.27) Results of 9.45% gas demand forecast scenario (2005- 2025)	86
Fig (4.28) results of Low, Medium and High gas demand forecasts (2008-2030)	87
Fig (4.29) IEA Reference gas supply scenario against the proposed gas demand forecasts	
up to year 2030	88
Fig (4.30) IEA Deferred gas supply scenario against the proposed gas demand forecasts	0.0
up to year 2030	89
Fig (4.31) Percentage increase in Price Index by sector in case of removing all fuel subsidies	96
Fig (4.32) Future carbon prices up to year 2030 under the IEA scenarios	97
Chapter 5	
Fig (5.1) Breakdown of the IRP planning process	101
Fig (5.2) Generation cost comparison (US\$\MWh) for the different generation candidates	
with its cost components	107
Fig (5.3) Installed capacity by type in first and last year of the study period for Base Case	112
Fig (5.4) Generated energy by type in first and last year of the study period for Base Case	113

Fig (5.5) Fuel consumption by type in first and last year of the study period for Base Case	113
Fig (5.6) Annual CO ₂ emissions in the Base Case	114
Fig (5.7) Total fuel consumption for the Hybrid Wind scenarios and Base Case	118
Fig (5.8) Total CO ₂ emissions for the Hybrid Wind scenarios and Base Case	118
Fig (5.9) Total system costs for the Hybrid Wind scenarios and Base Case	118
Fig (5.10) Total fuel consumption in DSM scenarios and Base Case	122
Fig (5.11) Total CO ₂ emissions in DSM scenarios and Base Case	122
Fig (5.12) Total system costs in DSM scenarios and Base Case	123
Fig (5.13) Total fuel consumption in Nuclear Power scenarios and Base Case	126
Fig (5.14) Total CO ₂ emissions in Nuclear Power scenarios and Base Case	126
Fig (5.15) Total system costs in Nuclear Power scenarios and Base Case	127
Fig (5.16) Total fuel consumption in IRP scenarios and Base Case	133
Fig (5.17) Total CO ₂ emissions in IRP scenarios and Base Case	133
Fig (5.18) Total system costs in IRP scenarios and Base Case	133
Fig (5.19) Generation capacity mix in year 2030 for Case 18 & Base case	141
Fig (5.20) Energy mix in year 2030 for Case 18 & Base case	141
Fig (5.21) Annual fuel consumption for Case 18 & Base case	142
Fig (5.22) Annual CO ₂ emissions for Case 18 & Base case	143
Fig (5.23) Annual system generation costs for Case 18 & Base case	143