

EFFICACY OF IVERMECTIN TO CONTROL LEISHMANIA MAJOR IN SAND FLY VECTOR PHLEBOTOMUS PAPATASI AND THE MAMMALIAN HOST

A Thesis
Submitted in Fulfillment
of
The Requirement for the Degree
of
Doctor of Philosophy
in Zoology

JANETTE MOUSSA KAMEL GEORGY B.Sc. and M. Sc.

Zoology Department,
Girls college for Arts, Science
and Education
Ain Shams University
2005

EFFICACY OF IVERMECTIN TO CONTROL LEISHMANIA MAJOR IN SAND FLY VECTOR PHLEBOTOMUS PAPATASI AND THE MAMMALIAN HOST BY JANETTE MOUSSA KAMEL GEORGY B.Sc. and M. Sc.

Supervising Committee:

- 1- Prof. Dr. Erian G. Kamel
 Professor of Invertebrates and Parasitology,
 Zoology Department,
 Girls college for Arts, Science and Education,
 Ain Shams University.
- 2-Prof. Dr. Bahira M. El Sawaf
 Professor of Medical Entomology,
 Entomology Department, Faculty of Science,
 Ain Shams University.
- 3- Prof. Dr. Magdi G. Shehata
 Professor of Medical Entomology,
 Faculty of Science,
 Ain Shams University.
- 4- Dr. Hala A. Kassem
 Associate Professor,
 Department of Environmental Basic Sciences,
 Institute of Environmental Studies and Research,
 Ain Shams University.

EFFICACY OF IVERMECTIN TO CONTROL LEISHMANIA MAJOR IN SAND FLY VECTOR PHLEBOTOMUS PAPATASI AND THE MAMMALIAN HOST

BY JANETTE MOUSSA KAMEL GEORGY B.Sc. and M. Sc.

This Thesis has been approved by:

- 1- Prof. Dr. Mohamed Wagdy Farid Younes
 Professor of Entomology,
 Zoology Department, Faculty of Science,
 Monofyia University.
- 2- Prof. Dr. Mohamed Saad Hamed Professor of Entomology, Entomology Department, Faculty of Science, Ain Shams University.
- 3- Prof. Dr. Bahira M. El Sawaf
 Professor of Medical Entomology,
 Faculty of Science,
 Ain Shams University.
- 4- Prof. Dr. Erian G. Kamel
 Professor of Invertebrates and Parasitology,
 Zoology Department, Girls college for Arts,
 Science and Education,
 Ain Shams University.

Biography

Date and Place of Birth: 18 April, 1971, Cairo

Degrees awarded: B. Sc. Zoology, 1993, Girls college for

Arts, Science and Education, Ain

Shams University.

M. Sc. Zoology, 1999, Girls college for

Arts, Science and Education, Ain

Shams University.

Occupation : Assistant Lecturer, Zoology

Department, Girls college for Arts, Science and Education, Ain Shams

University.

Date of registration for: March 2000

the Ph.D.

ACKNOWLEDGEMENT

Thanks for the Merciful and Compassionate God who helped me with the capability for carrying out this work.

Words fail to express my deepest gratitude and special thanks to *Dr. Erian George Kamel Professor of Invertebrates and Parasitology, Girls college for Arts, Science and Education, Ain Shams University* for his precious assistance, valuable helps and critical reading of the manuscript, sharing his expertise with me during the research. Such unlimited assistance will never be forgotten and I shall always remain indebted to him.

I would like to express my sincere gratitude to *Dr. Bahira El Sawaf Professor of Medical Entomology, Faculty of Science, Ain Shams University*, for her advice, interest, otmost patience, fruitful advice, helpful discussion, revising the manuscript and continuous guidance throughout the course of this work. I am also greatly indebted to her continuous support.

Deeply indebted to *Dr. Magdi Gebril Shehata* Professor of Medical Entomology, Faculty of Science, Ain Shams University, for his sincere help, continuous guidance, offering all the required facilities, encouragement and direct and active supervision throughout the present study.

I would like to express my deepest thanks and greatly appreciation to *Dr. Hala Kassem Associate professor*, *Department of Environmental Basic Sciences*, *Institute of Environmental Studies and Research*, *Ain Shams University*, for suggesting and planning the present investigation, energetic help and illuminating advice, and follow up during different stages of constructive criticisms, revision of the manuscript.

I would like to thank all the staff member of the Vector Biology Program, *NAMRU-3 Cairo*, for their encouragement and supporting me to continue the Abamectin bioassays, providing me with *Leishmania* parasites and offering all the required facilities. Sincere thanks are specially due to *Dr. Hanafi Ahmed Hanafi*, Medical Entomologist at the department, for his collaboration and valuable helps during study course.

Great thanks are due to *Dr. Maha Kamal Tewfick*, Lecturer, Faculty of Education, Suez Canal University, for her valuable help with the Probit analysis of the data.

I would like to express my deepest thanks to Tharwat Saman, Computer Engineer, for his great effort to finish thesis writing with me.

My gratitude and thanks are dedicated to my colleagues in insectory, institute of Environmental Studies & Research, Ain Shams University, for the valuable assistance in maintaining the sand fly colony during the research.

Finally, I would like to acknowledge all staff members of the Research and Training Center on Vector of Diseases, Ain Shams University, for their friendly help and support.

Last but not least, my deepest appreciation is rightfully given to all my colleagues and the staff members, at Department of Zoology, Girls college for Arts, Science and Education, Ain Shams University, for their friendly help and cooperation throughout the present work.

CONTENTS

TITLE	PAGE
Abstract	I
List of tables.	III
List of figures	IV
T T . 1	1
I- Introduction II- Literature review	4
1. Avermectin	4
1.1 Effect of avermenting on parasites and	4
nematodes	4
1.2. Effect of avermectins on arthropods	9
1.2.1 Direct administration of avermectins	9
1.2.2. Systemic activity of avermectins	22
2. Effect of other biocides on sand flies and	39
Leishmania.	
III- Materials and Methods	43
1. Sand fly species	43
2. Laboratory rearing and colonization of sand flies	43
2.1. Preparation of containers for sand flies breeding.	43
2.2. Adult holding cages	43
2.3. Preparation of larval diet	45
2.4. Maintenance of the colony	45
2.4.1. Maintenance of immature stages	46
2.4.2. Maintenance of adults	46
3. Leishmania parasite	48
4. Leishmania growth media	48
4.1. Solid medium (NNN medium)	49
4.1.1. <i>Leishmania</i> cultivation	49
4.2. Schneider's medium.	49
4.2.1. <i>Leishmania</i> cultivation	50
4.3. Liquid medium (Tanabe's medium)	50
4.3.1. <i>Leishmania</i> cultivation	50
5. Experimental infection studies	50
5.1. Sand flies	50

5.2. Type of blood used for feeding the sand flies
5.2.1.The washed blood cells
5.2.2. Defibrinated blood
5.3. Preparation of <i>Leishmania</i> parasites for
sand fly infection
5.4. Feeding apparatus
5.5. Infection using membrane feeding technique
5.6. Dissection of sand fly
6. Avermectins bioassay
6.1. Bioassay of abamectin
6.1.1. The effect of abamectin on sand fly
P. papatasi
6.1.2. The effect of abamectin on <i>Leishmania</i>
parasites in sand fly
6.1.3. The effect of abamectin on <i>Leishmania</i>
parasites in the culture
6.2. Bioassay of ivermectin
6.2.1. Systemic activity of ivermectin on sand fly
P. papatasi
6.2.2. The effect of ivermectin on biological
attributes of sand fly <i>P. papatasi</i>
6.2.3. The effect of ivermectin on <i>Leishmania</i>
parasites in culture
7. Histological studies
7.1. Histological studies on sand flies
7.1.1. Histological studies on the gut of sand flies
7.1.1.1 The histological effect of LC_{30} abamectin
on the gut of sand fly P. papatasi
7.1.1.2. The histological effect of LD_{30}
ivermectin on the females of \boldsymbol{P} .
papatasi
7.1.2. Histological studies on the ovary
of sand flies
7.2. Histological studies on treated hamster with
ivermectin
8. Statistical analysis

IV- Results	61
1. Avermectins bioassay	61
1.1. Efficacy of abamectin	61
1.1.1. Determination of sublethal dose of	
abamectin on sand fly P. papatasi	61
1.1.2. The effect of abamectin on <i>Leishmania</i>	
parasites in sand fly P. papatasi	64
1.1.3. Determination of lethal dose of abamectin	
on <i>Leishmania</i> parasites in culture	64
1.2. Efficacy of ivermectin	66
1.2.1. Systemic activity of ivermectin on	
sandfly P. papatasi	69
1.2.1.1. Effect of different doses of ivermectin on	72
the survival of P. papatasi	
1.2.2. The effect of LD_{30} ivermectin on the	76
biological attributes of sand fly P. papatasi	78
1.2.2.1 Fecundity and longevity	78
1.2.2.2. Egg hatching	78
1.2.2.3. Adult emergence and sex ratio	
1.2.3. Determination of lethal dose of ivermectin	80
on <i>Leishmania</i> parasites	84
2. Histological studies	84
2.1. Histological studies on sand flies	84
2.1.1. Histological studies on the gut of sand flies	84
2.1.1.1. Gut description of normal <i>P. papatasi</i>	
2.1.1.2. The effect of abamectin on the gut	86
of P. papatasi	
2.1.1.3. The effect of ivermectin on the gut of	88
P. papatasi	88
2.1.2. Histological studies on the ovary of sand flies	88
2.1.2.1.Description of normal ovary of <i>P. papatasi</i> .	
2.1.2.2. The effect of ivermectin on the ovary of	91
P. papatasi	
2.2. Histological studies on treated hamster with	94
ivermectin	94
2.2.1. Liver	94

2.2.1.1. Normal liver	
2.2.1.2. Liver specimens of hamster injected with	94
the sublethal dose (2.6 µl) of ivermectin	
2.2.1.3. Liver specimens of hamster injected with	97
the lethal dose (16 µl) of ivermectin	100
2.2.2. Spleen	100
2.2.2.1. Normal spleen	
2.2.2.2. Spleen specimens of hamster injected with	100
the sublethal dose (2.6 μl) of ivermectin	
2.2.2.3. Spleen specimens of hamster injected with	100
the lethal dose (16 µl) of ivermectin	105
V- Discussion	119
VI- Summary	124
VII- References	149
VIII- Arabic summary	

ABSTRACT

EFFICACY OF IVERMECTIN TO CONTROL LEISHMANIA MAJOR IN SAND FLY VECTOR PHLEBOTOMUS PAPATASI AND THE MAMMALIAN HOST.

BY: JANETTE MOUSSA KAMEL GEORGY

The present study investigated the effect of two avermectins (ivermectin and abamectin) as environmentally safe biocides agents to control **Leishmania** parasites and **P.** papatasi sand flies. Treatment of P. papatasi adults with abamectin showed that abamectin has a high efficacy against sand flies at very low concentrations. The calculated LC₃₀ LC₅₀ and LC₉₀ values 48h post-treatment were 2.75ng, 4.35 ng and 13.28 ng respectively. Abamectin showed no effect on the mortality percentages of *L. major* parasites neither in culture nor in sand flies. Ivermectin revealed a great systemic activity on sandfly at extremely low dosage. The values of LD₃₀, LD₅₀ and LD₉₀ values 48h post-treatment were 2.62 µl, 3.65 µl and 8.22 µl respectively. The highest mortality was achieved at 24 h of the treatment. No fly mortality was observed after 72 h till the 9th day post injection at all doses. Survival of **P. papatasi** females that tolerated 2.6 ul. 3 ul and 7 ul of ivermectin was 11, 6, 12 days versus 15 days for the control. Flies fed on 2.6 ul and 7µl lived significantly shorter than those did in control group. Sublethal dose (LD₃₀) of Ivermectin also produced significant reduction in the fecundity but lower effect on fertility. Ivermectin significantly reduced the longevity of treated females and decreased the number of emerging flies. Sex ratio distortion (male biased) was observed. Ivermectin showed high activity against Leishmania parasites in culture. The corresponding LC₃₀, LC₅₀ and LC₉₀ values were 0.25 ug. 1.45 µg and 107.1 µg. Histopathological studies revealed that abamectin displayed a great efficacy on the gut of sandfly P. **papatasi** when treated with LC₃₀. This efficacy appeared from the third day post feeding. No apparent histological changes in the treated gut with LD₃₀ of ivermectin was observed. Histopathologic effect on the ovaries on the sixth and seventh

days post-feeding was noticed. The oocytes were few in numbers and the nuclei of nurse cells were extremely distorted and showed pycnosis. The effect of ivermectin on the liver of treated hamster with 2.6 μl displayed pathologic alteration in the hepatocytes enlargement and disarrangement of hepatic sinusoids were also observed. The liver tissues with the lethal dose (16 μl) of ivermectin showed that the hepatic tissue has completely lost their characteristic features. The treated splenic tissue with sublethal dose of ivermectin suffered minimal dose dependent pathological alterations. With the lethal (16 μl) dose applied to hamster, spleen tissue showed progressive ulceration.

Key words: Ivermectin – Abamectin – Leishmania major – Phlebotomus papatasi - Hamster.

LIST OF TABLES

TABLE 1-	Effect of abamectin on P. papatasi 48h post-feeding.	PAGE 62
2-	The intensity of gut infection of P. papatasi with L. major parasites after feeding on abamectin with sugar meal.	65
3-	Effect of abamectin on L. major in culture 48h post-feeding.	67
4-	Effect of ivermectin on P. papatasi 48h post-feeding.	70
5-	Cumulative daily survival rates of P. papatasi females surviving different doses of ivermectin in blood meal.	75
6-	The effect of a sublethal dose (LC ₃₀) of ivermectin on the longevity, fecundity, the hatching of egg and sex ratio of P. papatasi females.	77
7-	Effect of ivermectin on <i>L. major</i> 48h post-feeding.	81

LIST OF FIGURES

PAGE

FIGURE

1-	Adult holding cages and the bag with sides of cotton cloth and nylon organdy covered with plastic bag.	44
2-	Seven-dram polystyrene snap cap vials for breeding immature stages.	44
3-	Sand fly life cycle, showing egg, larva, pupa and adult.	47
4-	Sequence of sand fly dissection for Leishmania isolation.	54
5-	Efficacy regression line of abamectin on sand fly P. papatasi after 48h of treatment.	63
6-	Efficacy regression line of abamectin on Leishmania parasites after 48h of treatment	68
7-	Efficacy regression line of ivermectin on sand fly P. papatasi after 24, 48 and 72h of treatment.	71
8-	Efficacy regression line of abamectin and ivermectin on sand fly P. papatasi after 48h of treatment.	73
9-	Daily survival of female P. papatasi after they had ingested blood meal containing 2.6 µl or 3 µl or 7 µl ivermectin when compared to the drug-free control flies.	74
10-	The effect of blood meal containing sublethal dose (2.6 µl) ivermectin on the number of egg laid by female, percent of these eggs hatched and the sex ratio of adult emerged for the treated and untreated flies.	79

11-	Toxicity regression line of ivermectin on Leishmania parasites after 48h of treatment.	82
12-	Efficacy regression line of abamectin and L. major after 48h of treatment.	83
13-	Schematic draws of a sand fly in sagittal section, showing the morphology and anatomical divisions of the gut.	85
14-	Transverse section in foregut of normal sand fly P. papatasi (3-days post-feeding) showing columnar cells (Cc), nucleus (N), muscles (M) and fat cells (Fc).	85
15-	Transverse section in midgut of 2.75 ng abamectin treated sand fly P. papatasi (3-days post-treatment) showing elongation of columnar cells [Cc], clumping of nuclear chromatin (N) and deep vacuolization through the epithelial cells (V) as well as and fat cells (Fc).	87
16-	Transverse section in midgut of normal sand fly P. papatasi (2-days post-feeding) showing columnar cells (Cc), nucleus (N), microvilli (Mv), the peritrophic membrane (pm) appears with the rudiment of blood meal and the fat cells around midgut.	89
17-	Transverse section in anterior midgut of 2.6 µl ivermectin treated sand fly P. papatasi (2-days post-feeding) showing columnar cells (Cc), nucleus (N) and the peritrophic membrane (Pm) appears with blood meal.	89
18-	Sagittal section in ovary of normal sand fly P. papatasi showing ovarioles and developing oocystes with follicle epithelium, nurse cells	90