Primary and Permanent Enamel Bond Strength, Water Sorption and Solubility of a Glass Ionomer Cement Containing Cetrimide versus Miswak

Thesis

Submitted to the Department of Pediatric Dentistry and Dental
Public Health
Faculty of Dentistry
Ain Shams University

In

Partial fulfillment of the requirements of the Master Degree in Pediatric Dentistry

By

Salma Mohamed Amin Ahmed El-Wazeer

Instructor
B.D.S
Faculty of Dentistry
Ain Shams University, 2008

2014

Supervisors

Dr. Nadia Ezz El-Din Mohamed Metwalli

Professor, Pediatric Dentistry and Dental Public Health Department and Vice Dean for Community and Environmental Affairs

Faculty of Dentistry

Ain Shams University

Dr. Noha Samir Kabil

Associate Professor, Pediatric Dentistry and Dental Public Health
Department
Faculty of Dentistry
Ain Shams University

Dr. Mariem Osama Mohamed Wassel

Lecturer, Pediatric Dentistry and Dental Public Health Department
Faculty of Dentistry
Ain Shams University

Dedicated to

My Father

Who taught me that Persistence and hard work are the essentials for a successful life.

My Mother

My first word, who always inspires me with her love, guidance and prayers.

My Husband

Without his love, encouragement, patience, tremendous support and help, this piece of work would have been a long lonely trip.

And last, but certainly not least, my beloved son

OMAR

The joy of my life, whose smile always cheers me up, and pushes me forward.

Acknowledgement

First, I would like to express my greatest gratitude to the Almighty *ALLAH*, the one and only who has given me the opportunity, strength, courage and blessing to pursue this work. However, conducting the research and writing this thesis required the patience, persistence and motivation of many people whom I would like to personally acknowledge. First, I would like to extend my deepest thanks to my supervisors:

Dr. Nadia Ezz EL-Dín Metwalli, Professor of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Ain Shams University, for her continuous guidance, support, unlimited encouragement and love. Her advice added a lot to me not only from a professional level but also from a personal one.

Dr. Noha Samír Kabíl, Associate Professor of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Ain Shams University, for her assistance and support throughout the course of this research.

Dr. Mariem Osama Mohamed Wassel, Lecturer of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Ain Shams University, for her patience, time, continuous education and sincere advice not only throughout the course of this work but ever since the first day I joined the department.

Special acknowledgement of this achievement goes to *Dr.*Osama Mohamed Wassel, Senior Professor of Plant Physiology,

National Agriculture Research Center, and *Dr. Sherweit Hamed El-Ahmady*, Lecturer of Pharmacognosy, Faculty of Pharmacy, Ain Shams University; for their valuable help in collecting the miswak samples, and preparing the lyophilized aqueous miswak extract.

These acknowledgements would be incomplete without expressing my deepest appreciation to *Dr. Mostafa M. H. Khalil*, Professor of Inorganic Chemistry and director of the Central Lab. Unit, Faculty of Science, Ain Shams University; and *Dr. Mohamad S. Nassif*, Associate Professor, Biomaterials Department, Faculty of Dentistry, Ain Shams University; for their time, patience and valuable information.

Last, but certainly not least, to all my department staff, colleagues and friends for their utmost support and encouragement. To all of them, please accept my sincere and profound gratitude.

List of Contents

LIST OF TABLES	VII
LIST OF FIGURES	VIII
LIST OF ABBREVIATIONS	XII
INTRODUCTION	1
REVIEW OF LITERATURE	3
AIM OF STUDY	33
MATERIALS AND METHODS	34
RESULTS	64
DISCUSSION	80
SUMMARY	94
CONCLUSIONS	97
RECOMMENDATIONS	98
REFERENCES	99
ARABIC SUMMARY	124

List of Tables

Table 1:	Materials; compositions and manufacturers
Table 2:	Primary enamel SBS values (MPa) in different primary molars groups
Table 3:	Permanent enamel SBS (MPa) in different permanent premolars groups
Table 4:	Primary versus permanent enamel SBS values (MPa) within different groups
Table 5:	Prevalence of mode of failure in different primary molars groups
Table 6:	Prevalence of mode of failure in different permanent premolars groups
Table 7:	Prevalence of primary versus permanent mode of failure in different groups
Table 8:	Water sorption in different groups
Table 9:	Solubility in different groups
Table 10:	Correlation between water sorption and solubility 79

List of Figures

Figure 1a:	General chemical formula of QACs		
Figure 1b:	Chemical formula of CTAB		
Figure 2:	Mechanism of action of quaternary ammonium disinfictants		
Figure 3:	Arak tree		
Figure 4:	A high viscous glass ionomer cement (GC Fuji IXGP) 36		
Figure 5:	GC cavity conditioner		
Figure 6:	Cetrimide powder (white crystalline powder)		
Figure 7:	A sample of <i>S. persica</i> miswak chewing sticks		
Figure 8:	Lyophilized aqueous S. persica extract (powder form) 37		
Figure 9:	Cold cure acrylic resin		
Figure 10:	Aqueous miswak extract		
Figure 11:	Freeze drying machine		
Figure 12:	Weighing 1% CT powder using a digital balance 40		
Figure 13:	Weighing 1% lyophilized SPE powder on a digital balance		
Figure 14:	Diagram illustrating groups and their assigned symbols		
Figure 15:	Stereomicroscope with digital camera on top 43		
Figure 16a:	Split aluminum mounting rings, external plastic ring, and circular Teflon plate (separated)		

Figure 16b:	Split aluminum mounting rings, external plastic ring, and circular Teflon plate with an internal square (separated)
Figure 16c:	Split aluminum mounting rings, external plastic ring, and circular Teflon plate (all assembled)
Figure 16d:	Split aluminum mounting rings, external plastic ring, and circular Teflon plate (all assembled), with a piece of adhesive tape fitted inside the square
Figure 17a:	A primary molar mounted in an acrylic resin block
Figure 17b:	A premolar mounted in an acrylic resin block
Figure 18:	Depth cutting bur
Figure 19a:	Split Teflon plate with a 4 mm internal diameter central hole (separated)
Figure 19b:	Split Teflon plate with a 4 mm internal diameter central hole, and external copper ring (all assembled)
Figure 20:	Load applicator loaded with a 500 gm weight on top
Figure 21:	Digital micrometer
Figure 22a:	A SBS specimen (mounted primary molar with the bonded GIC cylinder)
Figure 22b:	A SBS specimen (mounted premolar with the bonded GIC cylinder)
Figure 23:	Incubator

Figure 24a:	Universal testing machine
Figure 24b:	Shear Bond Strength testing
Figure 25:	Stereomicroscope and the attached computer
Figure 26:	Grouping of water sorption and solubility testing 55
Figure 27a:	Split copper plates with external supporting copper ring (separated)
Figure 27b:	Split copper plates with external supporting copper ring (all assembled)
Figure 27c:	Split copper plates with external supporting copper ring (assembled), and a prepared specimen for water sorption and solubility testing
Figure 28:	Digital balance
Figure 29:	Color coding of the specimens according to the corresponding group
Figure 30:	Numbering and color coding of the specimens according to the corresponding group
Figure 31a:	Desiccator
Figure 31b:	Freshly dried silica gel (blue)
Figure 31c:	Desiccator with freshly dried silica gel (blue) 60
Figure 32:	Color coded specimens in the desiccator maintained at 37 °C inside the incubator
Figure 33:	Mean enamel SBS values (MPa) in different primary molars groups