ECO-DIVERSITY OF AQUATIC BACTERIA AND VIRUSES ISOLATED FROM RIVER NILE AND DRAINAGE WATER IN EGYPT

By

MOHAMED IBRAHIM HASAN AZZAM

B.Sc. Agric. Cooperative Sc., Higher Institute for Agric. Cooperation, 2003M.Sc. Agric. Sc. (Agricultural Viruses), Ain Shams University, 2010

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Agricultural Viruses)

Department of Agricultural Microbiology
Faculty of Agriculture
Ain Shams University

Approval Sheet

ECO-DIVERSITY OF AQUATIC BACTERIA AND VIRUSES ISOLATED FROM RIVER NILE AND DRAINAGE WATER IN EGYPT

By

MOHAMED IBRAHIM HASAN AZZAM

B.Sc. Agric. Cooperative Sc., Higher Institute for Agric. Cooperation, 2003M.Sc. Agric. Sc. (Agricultural Viruses), Ain Shams University, 2010

This thesis for Ph.D. degree has been approved by:

Date of Examination: / /2015

Dr.	Gamal El-Didamony Mohamed
	11011 01 virology, 1 act of Science, Eagazig Cinversity
Dr.	Sohair Ibrahim El-Afifi
	Prof. Emeritus of Agric. Virology, Fac. of Agric., Ain Shams University
Dr.	Khalid Abd El-Fattah El-Dougdoug
	Prof. Emeritus of Agric. Virology, Fac. of Agric., Ain Shams University
Dr.	Badawi Abd El-Salam Othman
	Prof. Emeritus of Agric. Virology, Fac. of Agric., Ain Shams University

ECO-DIVERSITY OF AQUATIC BACTERIA AND VIRUSES ISOLATED FROM RIVER NILE AND DRAINAGE WATER IN EGYPT

By

MOHAMED IBRAHIM HASAN AZZAM

B.Sc. Agric. Cooperative Sc., Higher Institute for Agric. Cooperation, 2003M.Sc. Agric. Sc. (Agricultural Viruses), Ain Shams University, 2010

Under the supervision of:

Dr. Badawi Abd El-Salam Othman

Prof. Emeritus of Agricultural Virology, Agric. Microbiol. Dept., Fac. of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Khalid Abd El-Fattah El-Dougdoug

Prof. Emeritus of Agricultural Virology, Agric. Microbiol. Dept., Fac. of Agriculture, Ain Shams University.

Dr. Safaa Mahmoud Ezzat

Senior Researcher of Microbiology, Central Laboratory for Environmental Quality Monitoring, National Water Research Center.

ABSTRACT

Mohamed Ibrahim Hasan Azzam: Eco-diversity of Aquatic Bacteria and Viruses Isolated from River Nile and Drainage Water in Egypt. Unpublished Ph.D. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2015.

This study aims to determine the impact of five main drains as sources of pollution on the water quality of River Nile at Rosetta branch, concerning physicochemical and microbiological characteristics. Eco-diversity studies of bacterial isolates were carried out through: antibiotic sensitivity, virulence and genetic variability. Eco-diversity studies of viral isolates were throughout: plaque morphology, host range, particle size, shape and molecular weight of genome.

The results of physicochemical, bacteriological and virological analyses revealed that, all drains selected in the study were suffering from varying levels of pollution. There was a gradual decrease in pollution levels along Rosetta branch (from downstream El-Rahawy to downstream Tala drain). The pollution impact caused by drains on Rosetta branch was remarkable from El-Rahawy drain which was considered the main point source of pollution. Results of water quality index was very bad in El-Rahawy and Sabal drains outlet and bad for all sites taken in this study except for upstream El-Rahawy drain, it was evaluated as being of medium quality.

Identification of bacterial isolates was carried out according to Bergey" s Manual of Systematic Bacteriology and confirmed using the analytical profile index 20 E strip system. Results revealed that, out of 225 isolates, 212 were belonging to four main bacterial families. The results of antibiotics resistance patterns for different bacterial isolates showed that Ecoli isolates were resistant to about (75%), Citrobacter freundii isolates (45%), Salmonella sp. isolates (85%), Proteus vulgaris isolates (87.5%), Pseudomonas aeruginosa isolates (100%), Enterococcus faecalis isolates (82.5%) and Staphylococcus aureus isolates (77.5%) of the tested antibiotics. Most of isolates were multiple antibiotic resistant (MAR). Methicillin resistant Staphylococcus aureus (MRSA) was reported in four isolates from drains and thirteen isolates from Rosetta branch. While, vancomycin resistant isolates (VRSA) were recorded, three isolates from drains and four isolates from Rosetta branch. Results of virulence test for all isolated bacteria showed positive congo red test (100%) for C.freundii and Salmonella sp, followed by P.aeruginosa (98%), P.vulgaris (91%), E.coli (60%), E.faecalis (40%) and S.aureus (72.3%).

The three *P.aeruginosa* isolates selected from different sites were successfully amplified and sequenced using 16s rDNA gene. Data showed that partial nucleotide sequences were 1274, 1280 and 1286bp, respectively

and compared with species recorded on Genbank and identified as *P.aeruginosa_1*, *P.aeruginosa_2* and *P.aeruginosa_3*, respectively.

Eight coliphage and *P.aeruginosa* phage isolates were isolated from water samples. The maximum of phage counts were recorded in River Nile and the minimum were detected in drainage water samples. Electron microscopy of the isolated *E.coli* and *P.aeruginosa* phages particles revealed that, phage particles had an isometric head and long-contractile tail and some particles appeared containing short tail with full heads.

Biological characteristics for isolated phages were determined by the spot test method. It was found that phages specific for *E.coli* could lyses *E.coli* strains 1, 3, B (ATCC) but failed to lyses *E.coli* strain 2. While, phages specific for *P.aeruginosa* could lyses *P.aeruginosa* strains B2 and 101 but failed to lyses *P.aeruginosa* strain 1, 2. On the other hand, coliphages had activity and were able to lyse their host at pH ranged from 6 to 10 and *P.aeruginosa* phages had activity and able to lyse their host at pH ranged from 6 to 9. Viral stability to acidity and alkalinity was also different from type of phage to another. Data of turbidity test showed that phage infection produced a drastic decrease of *E.coli* and *P.aeruginosa* cultures as compared to control and a constant increase in O.D₆₀₀ was seen after 16 and 18 h.

Restriction enzyme pattern of the eight isolated coliphages (C1 to C8) by *Eco*RI, *Hind*III and *Bam*HI showed the presence of dsDNA as well as heterogeneity among these phages. The results showed that *Eco*RI produced 8, 7, 5, 4, 4, 7, 9 and 5 fragments and *Hind*III produced 4, 3, 0, 0, 1, 6, 5 and 4 fragments while *Bam*HI produced only 1, 1, 1, 0, 0, 3, 0 and 1 unique fragment, for the eight phage isolates, respectively. Restriction enzyme pattern showed the DNA phage genomes diversity among eight phage isolates. Sixty four fragments appear specific amplified fragments represented (81%), one fragment appear common amplified fragment represented (10.13%). Also, the restriction enzyme pattern appear eight unique (genetic marker fragment) represented (10.13%).

Out of fifteen sites, two only (El-Rahawy and Sabal drains outlet) were found to be polluted with enteroviruses with rate of 3.6×10^4 and 3.4×10^4 genome copies per microliter, respectively using real time - quantitative reverse transcriptase – polymerase chain reaction (rt-qRT-PCR).

Key Words: River Nile, Drainage water, Pollution, Bacteria, Viruses, Bacteriophages, 16s rRNA gene, Restriction enzyme, rt-qRT-PCR.

ACKNOWLEDGMENT

My sincerest gratitude is due to Allah, who provided me with the blessings and health to finish this thesis. He encompassed me with His mercy and guidance in every step on the way.

I would like to express my dearest gratefulness to my supervisor Prof. Dr. Badawi A. Othman, Professor Emeritus of Agricultural Virology, Dept. of Agric. Microbiology, Faculty of Agriculture, Ain Shams University, for his supervision, continuous guidance, and kindness and also for his faith in my research and his confidence in me as a person. His truly scientist nature was a continuous source of inspiration for me during the work and provided me with all the encouragement and support I needed throughout my thesis.

My deepest gratitude and sincere thanks to Prof. Dr. Khalid Abd El-Fattah El-Dougdoug, Professor Emeritus Agricultural of Virology, Dept. of Agric. Microbiology, Faculty of Agriculture, Ain Shams University, for his efforts and valuable assistance to follow up the progress of this work with his continuous guidance during his supervision.

I'm greatly indebted to express my special thanks and great appreciation to Dr. Safaa Mahmoud Ezzat, Head of Microbiology Department, Central Laboratory for Environmental Quality Monitoring 'CLEQM', National Water Research Center 'NWRC', for suggesting the research idea of the thesis, constant support and unlimited helping me in increasing my knowledge in the present work.

I also would like to thank the Central Laboratory for Environmental Ouality Monitoring "CLEOM", for the financial support throughout this work.

I would like to express my great appreciation to all staff members of the Dept. of Agric. Microbiol., Fac. of Agric., Ain Shams Univ. for their help and cooperation during the investigation.

At last, but never the least, a very heartfelt gratitude goes to my Family and my colleagues for their cooperation and kind encouragement during my study.

CONTENTS

gainneur de la la minimente de la mandreur de la la minimente de la minimente de la la minimente de la la gal La minimente de la minimente d	Page	
LIST OF TABLES		
LIST OF FIGURES		
LIST OF ABBREVIATIONS	IX	
I. INTRODUCTION	1	
II. REVIEW OF LITERATURE	4	
III. MATERIALS AND METHODS	38	
1. Sampling sites and study area	38	
2. Sampling procedures	40	
3. Media and solutions used in this study	41	
4. Physico-chemical analyses of water samples	49	
4.1. Temperature	49	
4.2. Values of pH	49	
4.3. Electric conductivity (EC)	50	
4.4. Biochemical oxygen demand (BOD)	50	
4.5. Chemical oxygen demand (COD)	50	
4.6. Dissolved oxygen (DO)	50	
4.7. Total dissolved solids (TDS)	50	
4.8. Turbidity	50	
4.9. Ammonia (NH ₃)	50	
4.10. Nitrate and phosphate	50	
5. Bacteriological analyses of water samples	51	
5.1. Enumeration of standard plate count bacteria (SPC)	51	
5.2. Total coliforms (TC) count	51	
5.3. Fecal coliforms (FC) count	52	
5.4. Fecal streptococci (FS) count	52	
5.5. Detection and isolation of <i>Escherichia coli</i>	52	
5.6. Detection and isolation of Salmonella and other Gram-		
negative enteric bacteria	52	
5.7. Detection and isolation of <i>P.aeruginosa</i>	53	
negative enteric bacteria	53	
5.9. Detection and isolation of <i>Enterococcus faecalis</i>	54	
5.10. Purification and identification of bacterial isolates	54	
5.10.1. Gram reaction	54	
5.10.2. Motility test	54	

	Page
5.10.3. Sporulation	54
5.10.4. Capsule stain	54
5.10.5. Catalase test	55
5.10.6. Coagulase test	55
5.10.7. Oxidase test	55
5.10.8. Urease test	55
5.10.9. Phenylalanine deaminase test	55
5.10.10. Starch hydrolysis test	55
5.10.11. Gelatin liquefaction	55
5.10.12. Hydrogen sulphide production	55
5.10.13. Tween 80 hydrolysis	56
5.10.14. Indole production	56
5.10.15. Methyl red test	56
5.10.16. Voges-Proskauer test	56
5.10.17. Citrate test	56
5.10.18. Nitrate reduction	56
5.10.19. Haemolysis on blood agar medium	57
5.10.20. Sugar fermentation test	57
5.10.12. Hydrogen sulphide production. 5.10.13. Tween 80 hydrolysis. 5.10.14. Indole production. 5.10.15. Methyl red test. 5.10.16. Voges-Proskauer test. 5.10.17. Citrate test. 5.10.18. Nitrate reduction. 5.10.19. Haemolysis on blood agar medium. 5.10.20. Sugar fermentation test. 5.11. Identification by Analytical Profile Index (API) 20E strips.	
	á .
6. Antibiotic sensitivity test for bacterial isolates	57
7. In vitro pathogenicity test for bacterial isolates	59
8. 16s rDNA gene sequencing of <i>Pseudomonas aeruginosa</i>	59
8.1. Isolation of bacterial genomic DNA	8
8.2. Amplifying of 16s rDNA gene	59
8.3. PCR product for cycle sequencing	61
8.3.1. Performing cycle sequencing	61
8.3.2. Purifying extension products	61
8.3.3. Electrophoresis and sequencing extension products	61
8.4. Analyzing data	61
8.5. Sequence analyses	62
9. Detection of bacteriophages	62
9.1. Preparation of viruses lysate	62
9.2. Assaying of bacteriophages	62
9.3. Preparation of high titer phage stock	62
9.4. Preparation of high titre phage lysates	63

HARIKAN KANTAN KANT K	
	Page
9.5. Purification and concentration of <i>E.coli</i> and <i>P</i> .	
aeruginosa of phages	
9.6. Characterization of <i>E.coli</i> and <i>P.aeruginosa</i> phages	63
9.6.1. Electron microscopy examination	63
9.6.2. Determination of host range pattern of the phages	64
9.6.3. Determination of pH stability	64
9.6.4. Determination of bacterial reduction assay	64
9.7. Isolation of DNA phages	64
9.7.1. Extraction of DNA	64
9.7.2. Restriction enzyme digestion	65
10. Detection of enteroviruses	65
10.1. Virus concentration	65
10.2. Re-concentration.	
10.3. Molecular detection of enteric viruses	66
10.3.1. Viral RNA extraction from purifies viruses	66
10.3.2. Real-time-RT-PCR	
10.3.3. Oligonucleotide primers and TaqMan®	
probe for virus detection by rt-qRT-PCR	66
11. Calculated parameters and data analyses	69
11.1. Water quality index (WQI)	69
11.2. Multiple antibiotics resistance indexing	70
11.3. Statistical analyses	70
11.4. Phylogenetic tree and similarity index	70
IV. RESULTS	71
V. DISCUSSION	145
VI. SUMMARY	167
VII. REFERENCES	175
ARABIC SUMMARY	

IV

LIST OF TABLES

Table No.	Page
1. Location of the study sites in Rosetta branch and drains	38
2. Antibiotic used for sensitivity test	58
3. Composition of MicroAmp PCR tubes for samples and controls	60
4. Thermal cycling conditions for samples and controls	60
5. Cycle sequencing conditions for PCR product	61
6. Standard curve dilution of enterovirus	68
7. Physico-chemical properties of water samples collected from Rosetta branch	72
8. Physico-chemical properties of water samples collected from drains	72
9. The standard plate count bacteria (SPC), total coliforms (TC), fecal	
coliforms (FC) and fecal streptococci (FS) of water samples	
collected from drains and Rosetta branch.	80
10. The correlation coefficient matrix between physicochemical and	
bacteriological parameters	87
11. Calculated water quality index for collected water samples	88
12. Incidence of bacterial isolates recovery and identification from	
water samples collected from drains and Rosetta	89
branch	09
from water	91
14. Total number and percentages of identified bacteria in water samples collected from drains and Rosetta branch	95
15. Resistance profile of <i>E. coli</i> isolates against individual antibiotics	100
16. Resistance profile of <i>C.freundii</i> isolates against individual antibiotics	101
17. Resistance profile of Salmonella sp. isolates against individual	
antibiotics	102
18. Resistance profile of <i>P.vulgaris</i> isolates against individual antibiotics	103
19. Resistance profile of <i>P.aeruginosa</i> isolates against individual	
antibiotics	104
20. Resistance profile of <i>E.faecalis</i> isolates against individual	105
antibiotics.	105
21. Resistance profile of <i>S. aureus</i> isolates against individual antibiotics	106
22. Total number and percentages of resistant bacterial isolates from	

Table No.
collected water samples.
23. Multiple antibiotic resistance (MAR) index for bacteria isolated from collected water samples.
24. Percentages of pathogenic and non pathogenic bacterial isolates from water samples
25. Replacement situation of nitrogen base in nucleotide sequences of 16s rDNA gene for three <i>P.aeruginosa</i> isolates
26. Counts of nucleotides individually, in combined form, G+C/A+T and %G+C for the three isolates of <i>P.aeruginosa</i>
27. Incidence of <i>E.coli</i> and <i>P.aeruginosa</i> phages isolates recovery and identification from collected water samples
28. Morphology of plaques and appeared with <i>E.coli</i> after plaque assay of positive lytic area found in Rosetta and drains water samples
29. Morphology of plaques and appeared with <i>P.aeruginosa</i> after plaque assay of positive lytic area found in Rosetta and drains water samples.
30. Morphological features of different phage isolates specific for <i>E.coli</i> and <i>P.aeruginosa</i> as determines by TEM.
31. Lysosensibility of different <i>E.coli</i> strains to phage isolates
32. Lysosensibility of different <i>P.aeruginosa</i> strains to phage isolates
33. Stability of isolated <i>E.coli</i> phages to different pH values
34. Stability of isolated <i>P.aeruginosa</i> phages to different pH values
35. The reduction of the bacterial growth by isolated phages compared
with control
36. Number of fragments for coliphage isolates using three types of
restriction enzymes.
37. Polymorphism and genetic marker of DNA genome for eigh coliphages isolates by restriction fragment length polymorphism
(RFLP)
38. Similarity index between genome of eight coliphage isolates39. Qualitative and quantitative assay of enteroviruses in water samples collected from drains and Rosetta branch using rt-qRT
PCR