UTILIZATION OF SOME INDUSTRIAL SOLID WASTES AS SLAG COAGULATORS IN THE SMELTING PROCESS AND IN THE PRODUCTION OF BLENDED CEMENT

By

Ezz El-Din Hassan Ramadan

B.Sc. in Chemistry-Biochemistry, Ain Shams University, 1995 Master Science in Biochemistry, Ain Shams University, 1999

A Thesis Submitted in Partial Fulfillment of the Requirement for the Doctor of Philosophy in Environmental Science

Department of Biological & Natural Science Institute of Environmental Studies & Research Ain Shams University

APPROVAL SHEET

UTILIZATION OF SOME INDUSTRIAL SOLID WASTES AS SLAG COAGULATORS IN THE SMELTING PROCESS AND IN THE PRODUCTION OF BLENDED CEMENT

By

Ezz El-Din Hassan Ramadan

B.Sc. in Chemistry-Biochemistry, Ain Shams University, 1995 Master Science in Biochemistry, Ain Shams University, 1999

This Thesis Towards a Doctor of Philosophy Degree in Environmental Science Has Been Approved by:

Name: Signature

Prof. Dr. Salah A. Abo-El-Enein

Prof. of Physical Chemistry & Building Materials Faculty of Science - Ain Shams University

Prof. Dr. Mohammed G. El-Malky

Prof. in Department of Biological and Natural Science Institute of Environmental Studies and Research Ain Shams University

Prof. Dr. Samia H. M. Tantawi

Prof. of Cement Research Housing & Building National Research Center

Prof. Dr. Nadia A. M. Yossouf

Prof. of Physical Chemistry Girls College - Ain Shams University

UTILIZATION OF SOME INDUSTRIAL SOLID WASTES AS SLAG COAGULATORS IN THE SMELTING PROCESS AND IN THE PRODUCTION OF BLENDED CEMENT

By

Ezz El-Din Hassan Ramadan

B.Sc. in Chemistry-Biochemistry, Ain Shams University, 1995 Master Science in Biochemistry, Ain Shams University, 1999

A Thesis Submitted in Partial Fulfillment of the Requirement for the Doctor of Philosophy in Environmental Science

Department of Biological & Natural Science Institute of Environmental Studies & Research Ain Shams University

Under the Supervision of:

Prof. Dr. Salah A. Abo-El-Enein

Prof. of Physical Chemistry & Building Materials Faculty of Science-Ain Shams University

Prof. Dr. Mohammed G. El-Malky

Prof. & Head of Department of Biological and Natural Science Institute of Environmental Studies and Research Ain Shams University

Dr. Emad M.M. Ewais

Lecturer of Refractories & Advanced Materials Processing Central Metallurgical Research & Development Institute (CMRDI)

استخدام بعض المخلفات الصناعية الصلبة كمواد مجمعة لخبث المسبوكات وإنتاج الأسمنت المخلوط

رسالة مقدمة من عز الدين حسن رمضان

بكالوريوس علوه- (كيمياء- كيمياء حيوية)- جامعة عين همس- ١٩٩٥ ماجستير - كيمياء حيوية- جامعة عين همس- ١٩٩٩

لإستكمال متطلبات الحصول علي درجة دكتوراه فلسفة في العلوم البيئية

قسم العلمم البيم لمجية والطبيعية معمد الدراسات والبحوث البيئية جامعة عين شمس

صغدة الموافقة على الرسالة

استخدام بعض المخلفات الصناعية الطبة كمواد مجمعة لخبث المسبوكات وإنتاج الأسمنت المخلوط

رسالة مقدمة من عز الدين حسن رمضان

بكالوريوس علوو– (كيمياء– كيمياء حيوية)– جامعة عين همس– ١٩٩٥ ماجستير – كيمياء حيوية– جامعة عين همس– ١٩٩٩

لإستكمال متطلبات الحصول علي حرجة حكتوراه فلسفة في العلوم البيئية والطبيعية والعلوم البيولوجية والطبيعية

وجد تمت مناقشة الرسالة والموافقة عليما: اللبنة:

أ.د/ صلاح عبد الغني ابو العينين

أستاذ الكيمياء الغيزيائية ومواد البناء

كلية العلوم- جامعة غين شمس

أ.د/ محمد غريب المالكي

أستاذ بهسم العلوم البيولوجية والطبيعية

معمد الدراسات والبدوث البيئية - جامعة عين شمس

أ.د/ سامية حامد مرسي طنطاوي

أستاذ بحوث الأسمنج - المركزالقومي لبحوث الإسكان والبناء

أ.د/ نادية عبد الحكيم محمد بوسف

أستاذ الكيمياء الفيزيائية - كلية البنات - جامعة عين شمس

استخدام بعض المخلفات الصناعية الطبة كمواد مجمعة لخبث المسبوكات وإنتاج الأسمنت المخلوط

رسالة مقدمة من

عز الدين حسن رمضان

بكالوريوس علوو- (كيمياء كيمياء حيوية)- جامعة عين شمس- ١٩٩٥ ماجستير - كيمياء حيوية- جامعة عين شمس- ١٩٩٩

لإستكمال متطلبات الحصول علي حرجة دكتوراء فلسفة في العلوم البيئية وسم العلوم البيولوجية والطبيعية

تحت إشرافه:

أ.د/ صلاح عبد الغني ابو العينين

أستاذ الكيمياء الغيزيانية ومواد البناء كلبة العلوم – جامعة عبن شمس

أ.د/ محمد غريب المالكي

أستاذ ورئيس قسم العلوم البيولوجية والطبيعية معمد الدراسات والبحوث البيئية - جامعة عين شمس

سيهذ عممد عممد عامد /ے

مدرس بمركز بدوث وتطوير الفلزات

ختم الإجازة

أجيزت الرسالة بتاريخ / / ٢٠٠٧

موافقة مجلس المعمد

Γ••۷ / /

موافقة الجامعة / / ۲۰۰۷

ABSTRACT

Granulated blast-furnace slag (GBFS) is an industrial solid waste produced during the production of pig iron industry. The present investigation represents the utilization of different proportions of granulated blast-furnace slag (GBFS) in the production of Portland blastfurnace slag cements mixed with ordinary Portland cement (OPC). In addition to, feldspar was selected to be a slag coagulator in the smelting process after mixing with granulated blast-furnace slag in different ratios. For these reasons various slag cement pastes are made of three mixes of OPC and GBFS, namely, with OPC/GBFS ratios of 70/30, 50/50 and 30/70; these mixes are designated as Mixes I, II and III, respectively, and their results were compared with those of OPC cement pastes. The slag cement pastes are prepared from each OPC-GBFS blend using different initial water/cement (W/C) ratios of 0.25, 0.35, 0.40 and 0.50 as well as the amount of water required for the standard water of consistency (the standard W/C ratio). All of the cement pastes are hydrated at 30 °C for various time intervals. In addition, the cement pastes made with the standard water of consistency are hydrated at 20, 30, 45 and 60 °C for different time intervals. Each of the hardened slag cement blends was investigated for its physico-chemical and mechanical properties. In addition, identification of the phase composition of the formed hydrates by using X-ray diffraction (XRD) and differential thermal analysis (DTA) techniques. The results of the hardened slag cement pastes indicated that as the W/C ratio (initial porosity) increases the chemically combined water content (W_n, %) increases, the free lime content (CaO, %) increases, the free slag content decreases and the compressive strength values decrease. On the other hand, the results showed that as the applied

curing temperature increases the chemically combined water content (W_n, %) increases, the free lime content decreases and the free slag content decreases. Also, the pastes exposed to higher curing temperatures (45 and 60 °C) possess low ultimate compressive strength values at the later ages of hydration. From the results obtained, it can be concluded that the rate of hydration (hydraulic reactivity) of the granulated blast-furnace slag increases with the increase of W/C ratio (initial porosity) and with the increase of the applied curing temperature as well. Also, the results obtained from the feldspar-granulated blast-furnace slag system as slag coagulator in the smelting process indicated that the increasing of the blast-furnace slag content to 8 % (maximum) with decreasing the firing temperature to 1200 °C (minimum) and decreasing the average particle size to reach 1 mm (minimum) of slag coagulator increases the quantity of collected slag. Also, the increasing of the blast-furnace slag content with decreasing of the firing temperature of prepared mixes leads to decreasing in the density which helps in increasing quantity of collected slag.

Key words: Ordinary Portland cement

Granulated blast-furnace slag

Slag cement Hydration W/C ratio

Curing temperature

Feldspar

Slag coagulator Smelting process

CONTENTS

ACKNOWLEDGMENT
ABSTRACT
CONTENTS.
LIST OF TABLES
LIST OF FIGURES
CHAPTER I : INTRODUCTION AND OBJECT OF INVESTIGATION
IA- INTRODUCTION
IA.1- Portland Cement.
IA.1.1- Introductory remarks
IA.1.2- Types of Portland cement
IA.2- Blast-Furnace Slag.
IA.3- Portland Granulated Blast-Furnace Slag Cement
IA.4- Hydration of Portland Cement
IA.5- Hydration of Portland Granulated Blast-Furnace Slag
Cement.
IA.6- Solid Wastes as Slag Coagulators in the Smelting
Process
IA.6.1- Introductory remarks regarding the smelting process
IA.6.2- Feldspar.
IB- OBJECT OF INVESTIGATION
CHAPTER II : MATERIALS AND METHODS OF INVESTIGATION
IIA- Starting Materials and Preparation of Slag Cement
Mixtures
IIA.1- Starting materials
IIA.2- Preparation of dry slag cement mixtures
IIA.3- Preparation of cement pastes and curing
IIA.3.1- Determination of the standard water of consistency
IIA.3.2- Pastes made with different W/C ratios and cured at
constant temperature
IIA.3.3- Pastes made with constant W/C ratio and cured at
different temperatures

IIB- Methods of Investigation	55
IIB.1- Compressive strength measurements	55
IIB.2- Stopping of hydration	55
IIB.3- Hydration kinetics	55
IIB.3.1- Determination of non-evaporable (chemically-combined)	
water content	55
IIB.3.2- Determination of free lime content	56
IIB.3.3- Determination of free slag content	58
IIB.4- Techniques of phase identification	58
IIB.4.1- X-ray diffraction (XRD)	58
IIB.4.2- Differential thermal analysis (DTA)	58
iib. 1.2 Differential thermal analysis (D171)	50
IIC- Solid Wastes as Slag Coagulators in the Smelting Process	60
IIC.1- Starting materials	60
IIC.2- Experimental design	60
IIC.3- Slag coagulation procedure	62
IIC.4- Determination of the apparent density	64
IIC.4- Determination of the apparent density	04
CHAPTER III: RESULTS AND DISCUSSION	
CIM TEX III : RESOLIS MAD DISCOSSION	
III- Hydration Characteristics of Blast-Furnace Slag Cements Pastes	66
IIIA- Physico-chemical and Mechanical Properties of the	00
Hardened Cement Pastes Made with Different W/C Ratios	67
and Cured at Constant Temperature	68
IIIA.1- Kinetics of hydration	
IIIA.1.1- Chemically-combined water contents	68
IIIA.1.1.a- Chemically-combined water contents of the hardened	~ 0
OPC cement pastes	68
IIIA.1.1.b- Chemically-combined water contents of the hardened	
slag cement pastes made of Mix I	70
IIIA.1.1.c- Chemically-combined water contents of the hardened	
slag cement pastes made of Mix II	71
IIIA.1.1.d- Chemically-combined water contents of the hardened	
slag cement pastes made of Mix III	75
IIIA.1.2- Free lime contents	77
IIIA.1.2.a- Free lime contents of the hardened OPC cement	
pastes	77

IIIA.1.2.b- Free lime contents of the hardened slag cement pastes	
made of Mix I	,
IIIA.1.2.c- Free lime contents of the hardened slag cement pastes	
made of Mix II	
IIIA.1.2.d- Free lime contents of the hardened slag cement pastes	
made of Mix III	
IIIA.1.3- Free slag contents	
IIIA.1.3.a - Free slag contents of the hardened slag cement pastes made of Mix I	
IIIA.1.3.b- Free slag contents of the hardened slag cement pastes	
made of Mix II	
IIIA.1.3.c- Free slag contents of the hardened slag cement pastes	
made of Mix III	
IIIA.2- Compressive strength	
IIIA.2.a- Compressive strength values of the hardened OPC	
cement pastes	
IIIA.2.b- Compressive strength values of the hardened slag	
cement pastes made of Mix I	
IIIA.2.c- Compressive strength values of the hardened slag	
cement pastes made of Mix II	
IIIA.2.d- Compressive strength values of the hardened slag	
cement pastes made of Mix III	
IIIA.3- Phase composition of the formed hydrates	
IIIA.3.1- X-ray diffraction (XRD) analysis	
IIIA.3.1.1- X-ray diffraction (XRD) patterns of the hydration	
products of the hardened OPC cement pastes	-
IIIA.3.1.1.a- X-ray diffraction (XRD) patterns for the hardened	
cement pastes made of OPC with 0.25 W/C ratio and	
cured at 30 °C	
IIIA.3.1.1.b- X-ray diffraction (XRD) patterns for the hardened	
cement pastes made of OPC with 0.50 W/C ratio and	
cured at 30 °C	-
IIIA.3.1.2- X-ray diffraction (XRD) patterns of the hydration	
products of the hardened slag cement pastes made of	
Mix I	
IIIA.3.1.2.a- X-ray diffraction (XRD) patterns for the hardened	
slag cement pastes made of Mix I (70% OPC and	
30% Slag) with 0.25 W/C ratio and cured at 30 °C	
IIIA.3.1.2.b- X-ray diffraction (XRD) patterns for the hardened	
slag cement pastes made of Mix I (70% OPC and	
30% Slag) with 0.50 W/C ratio and cured at 30 0 C	1

IIIA.3.1.3- X-ray diffraction (XRD) patterns of the hydration	
products of the hardened slag cement pastes made of	
Mix III	1
IIIA.3.1.3.a- X-ray diffraction (XRD) patterns for the hardened	
slag cement pastes made of Mix III (30% OPC and	
70% Slag) with 0.25 W/C ratio and cured at 30 °C	1
IIIA.3.1.3.b- X-ray diffraction (XRD) patterns for the hardened	1
slag cement pastes made of Mix III (30% OPC and	
	1
70% Slag) with 0.50 W/C ratio and cured at 30 °C	
IIIA.3.2- Differential thermal analysis (DTA)	1
IIIA.3.2.1- DTA-thermograms of the hydration products of OPC	
cement pastes	1
IIIA.3.2.2- DTA-thermograms of the hydration products of the	
hardened slag cement pastes made of Mix I	1
IIIA.3.2.3- DTA-thermograms of the hydration products of the	
hardened slag cement pastes made of	
Mix III	1
IIIB- Physico-chemical and Mechanical Properties of Cement	
Pastes Made with the Standard Water of Consistency and	
Cured at Different Temperatures	1
IIIB.1- Kinetics of hydration	1
IIIB.1.1- Chemically-combined water contents	1
IIIB.1.1.a- Chemically-combined water contents of the hardened	-
OPC cement pastes	1
IIIB.1.1.b- Chemically-combined water contents of the hardened	1
·	1
slag cement pastes made of Mix I	J
IIIB.1.1.c- Chemically-combined water contents of the hardened	1
slag cement pastes made of Mix II	1
IIIB.1.1.d- Chemically-combined water contents of the hardened	
slag cement pastes made of Mix III	1
IIIB.1.2- Free lime contents.	1
IIIB.1.2.a- Free lime contents of the hardened OPC cement	
pastes	1
IIIB.1.2.b- Free lime contents of the hardened slag cement pastes	
made of Mix I	1
IIIB.1.2.c- Free lime contents of the hardened slag cement pastes	
made of Mix II.	1
IIIB.1.2.d- Free lime contents of the hardened slag cement pastes	1
made of Mix III	1
IIIB.1.3- Free slag contents.	1
11117. L. J. 1 IVA/ 5102 VA/HIV/HIS	

IIIB.1.3.a- Free slag contents of the hardened slag cement pastes	
made of Mix I	
IIIB.1.3.b- Free slag contents of the hardened slag cement pastes made of Mix II	,
IIIB.1.3.c- Free slag contents of the hardened slag cement pastes	
made of Mix III	
IIIB.2- Compressive strength	-
IIIB.2.a- Compressive strength values of the hardened OPC cement pastes	
IIIB.2.b- Compressive strength values of the hardened slag cement pastes made of Mix I	
IIIB.2.c- Compressive strength values of the hardened slag	
cement pastes made of Mix II	
IIIB.2.d- Compressive strength values of the hardened slag	
cement pastes made of Mix III	
IIIB.3- Phase composition of the formed hydrates	
IIIB.3.1- X-ray diffraction (XRD) analysis	
IIIB.3.1.1- X-ray diffraction (XRD) patterns of the hydration	
products of the hardened OPC cement pastes	
IIIB.3.1.2- X-ray diffraction (XRD) patterns of the hydration products of the hardened slag cement pastes made of	
Mix I	
IIIB.3.1.3- X-ray diffraction (XRD) patterns of the hydration	
products of the hardened slag cement pastes made of	
Mix III	
IIIC- Solid Wastes as Slag Coagulators in the Smelting Process	
CHAPTER IV : SUMMARY AND CONCLUSIONS	
IV- SUMMARY AND CONCLUSIONS	
REFERENCES	
ARABIC SUMMARY	
ARABIC ABSTRACT	
ANADIC ADSTRACT	

LIST OF TABLES

		F
Table (1)	The specific surface areas of OPC and GBFS	-
Table (2)	Chemical composition of the starting materials	
Table (3)	Mix composition of the different slag cement	
	blends	
Table (4)	Designations of the cement pastes made with different W/C ratios and cured at 30 0 C	
Table (5)	Designation of the cement pastes made with the	
· ,	standard water of consistency and cured at different	
	temperatures	
Table (6)	The X-ray fluorescence analysis of the starting	
	materials	
Table (7)	The full matrix of the 2 ⁿ experiments	
Table (8)	The chosen levels of factors	
Table (9)	Conditions of eight experiments	
Table (10)	Designations of the cement pastes made with	
, ,	different W/C ratios and cured at 30 °C	
Table (11)	Chemically combined water contents (W _n , %) of the	
	hardened pastes made of ordinary Portland cement	
	(OPC) with different W/C ratios and cured at 30 °C	
	for different curing ages	
Table (12)	Chemically combined water contents (W _n , %) of the	
	hardened slag cement pastes made of Mix I with	
	different W/C ratios and cured at 30 °C for different	
	curing ages	
Table (13)	Chemically combined water contents (W _n , %) of the	
	hardened cement pastes made of Mix II with	
	different W/C ratios and cured at 30 °C for different	
	curing ages	
Table (14)	Chemically combined water contents (W _n , %) of the	
	hardened cement pastes made of Mix III with	
	different W/C ratios and cured at 30 °C for different	
	curing ages	
Table (15)	Free lime contents (CaO, %) of the hardened	
	cement pastes made of ordinary Portland cement	
	(OPC) with different W/C ratios and cured at 30 °C	
	for different curing ages	

Table (16)	Free lime contents (CaO, %) of the hardened slag cement pastes made of Mix I with different water cement ratios and cured at 30 °C for different curing ages	80
Table (17)	Free lime contents (CaO, %) of the hardened slag cement pastes made of Mix II with different W/C ratios and cured at 30 °C for different curing ages	82
Table (18)	Free lime contents (CaO, %) of the hardened slag cement pastes made of Mix III with different W/C ratios and cured at 30 °C for different curing ages	85
Table (19)	Free slag contents of the hardened slag cement pastes made of Mix I with different W/C ratios and cured at 30 °C for different curing ages	87
Table (20)	Free slag contents of the hardened slag cement pastes made of Mix II with different W/C ratios and	
Table (21)	cured at 30 °C for different curing ages	89
Table (22)	and cured at 30 °C for different curing ages	91 94
Table (23)	ages	94
Table (24)	Compressive strength values of the hardened slag cement pastes made of Mix II with different W/C ratios and cured at 30 0 C at different curing	99
Table (25)	ages	101
Table (26)	Designation of the cement pastes made with the standard water of consistency and cured at different temperatures.	120