

Hydrogeochemical Costal Hazard Assessment in North West Sinai, Egypt.

A Dissertation

Present to

Chemistry Department-Faculty of Science
Ain Shams University

By

Faten Attia Ali Mohammed

B.Sc. (2003), M.Sc. (2009) (Cairo University), Nuclear radiological Regulatory Authority.

For

The Degree of

Doctor of Philosophy in Science (Chemistry)

2018

" Hydrogeochemical Costal Hazard Assessment in North West Sinai, Egypt"

By

Faten Attia Ali Mohammed

has been reviewed and approved by the following

Approval

Prof. Dr. Mohammed Fathy El-Shahat

Prof. of Inorganic and analytical Chemistry

Faculty of Science, Ain Shams University.

Prof. Dr. Mostafa A. Sadek

Prof. of Isotope Hydrology

Nuclear radiological Regulatory Authority.

Prof. Dr. Abdel Fattah Bastawy Farag

Professor of Analytical Chemistry Faculty of Science, Helwan University.

Prof. Dr. Farid Abou El- Nour

Professor of Nuclear and Radiological Chemistry

Vice President of the former Egyptian Atomic Energy Authority.

Head of chemistry Department

Prof. Dr. Ibrahim H.A. Badr

List of Symbols and Abbreviations

amsl above mean sea level

AI Aggressiveness Index

DEM Digital Elevation Model

Ec Electrical conductivity

epm Equivalent part per million

Ki Kelley index

GIS Geographic Information System

LI Larson–Skold Index

mg/l milligram per liter

MODFLOW Software for simulating flow and

contaminate transport behavior

MT3D Engine in MODFLOW for simulating

Contaminant transport behavior

HCA hierarchical cluster analysis

PCA Principal Component Analysis

PC Principal Component

SAR Sodium Adsorption Ratio

SI Saturation Indices

TDS Total Dissolved Solids

WQI Water Quality Index

IDW Inverse Distance Weighted

CVI coastal vulnerability index

FFBI flash flood potentiality index

SH salinity hazard

GMWL Global Meteoric Water Line

Acknowledgement

I am deeply thankful to god, by the grace of whom the progress and success of this work was possible.

I would like to express my deepest thanks and gratitude to my supervisor **Prof.** Mohammed Fathy El-Shahat, Prof. Inorganic and Analytical chemistry, Faculty of Science – Ain Shams University for faithful help and continuous interest during this research.

It is my great pleasure to cordially express my sincere appreciation of all the efforts provided by **Prof. Mustafa Abdel-Hamid Sadek**, and **Prof. Wafaa Mohammed Mustafa Salem**, Professors of Isotope Hydrology, Sitting and Environmental Department, Nuclear and Radiological Regulatory Authority for their kind supervision, cooperation, faithful help and continuous interest during this research.

Special thanks to my family, my colleges espicially Dr Kamilia Hamed, Dr Nagwa Nassar, and Dr Rafat Rayan, for their faithful help, kene encouragement and blessed prayers.

Faten Attia Ali

644 © IWA Publishing 2017 Journal of Water and Health | 15.4 | 201

Hydrochemical and multivariate analysis of groundwater quality in the northwest of Sinai, Egypt

M. F. El-Shahat, M. A. Sadek, W. M. Salem, A. A. Embaby and F. A. Mohamed

ABSTRACT

The northwestern coast of Sinai is home to many economic activities and development programs, thus evaluation of the potentiality and vulnerability of water resources is important. The present work has been conducted on the groundwater resources of this area for describing the major features of groundwater quality and the principal factors that control salinity evolution. The major ionic content of 39 groundwater samples collected from the Quaternary aquifer shows high coefficients of variation reflecting asymmetry of aquifer recharge. The groundwater samples have been classified into four clusters (using hierarchical cluster analysis), these match the variety of total dissolvable solids, water types and ionic orders. The principal component analysis combined the ionic parameters of the studied groundwater samples into two principal components. The first represents about 56% of the whole sample variance reflecting a salinization due to evaporation, leaching, dissolution of marine salts and/or seawater intrusion. The second represents about 15.8% reflecting dilution with rain water and the El-Salam Canal. Most groundwater samples were not suitable for human consumption and about 41% are suitable for irrigation. However, all groundwater samples are suitable for cattle, about 69% and 15% are suitable for horses and poultry, respectively.

Key words

M. F. El-Shahat

Department of Chemistry, Faculty of Science, Ain Shams University, Khalifa El-Maamon St., El-Qobba Bridge, Cairo 11566, Egypt

M. A. Sadek

W. M. Salem

F. A. Mohamed (corresponding author)

Nuclear and Radiological Regulatory Authority
(ENRRA),

Cairo, Egypt

E-mail: chemfaten@gmail.com

A. A. Embaby

Faulty of Science, Damietta University, Damietta El-Gadeeda City, Kafr Saad, Damietta 34511, Egypt

INTRODUCTION

Coastal areas are highly sensitive to natural or anthropogenic effects. The northwestern coast of Sinai (site of the study area; Figure 1) is home to many economic activities: industry, agriculture, tourism, fisheries, trading and other development programs.

Securing water resources of appropriate quantity and quality is of prime importance for development programs in this important sector. This emphasises the importance of evaluation of the sustainability, potentiality and vulnerability of water resources from a development perspective.

The annual rainfall in the study area is limited; it varies between 26 and 54.8 mm and the total quantity of rainfall generally increases northward (El-Sheikh 2008). The national project of the El-Salam Canal has been started and River Nile water is being carried to Sinai. According to the Ministry

of Water Resources and Irrigation (1991, 2009) and Hafez (2005), it is expected that the Nile water supply to this area will not fulfill the requirements of all the planned projects. Therefore, the demand for freshwater supplies has accordingly increased and attention is focused on groundwater utilization as an alternative or additive to rainfall.

The quality of groundwater resources in coastal zones is affected by many constraints (natural and/or anthropogenic). These include seawater intrusion, rock/water interaction, evaporation, irrigation return and drainage water effects, etc. Identifying the principal factors that control the salinity evolution and water quality aspects helps to achieve sustainable use of coastal resources.

This paper describes the prevailing groundwater conditions in the northwestern coastal zone of Sinai and

CONTENT

CONTENTS

	Page
Contents	I
List of Figures	VI
List of Tables	X
Abstract	
Chapter 1: INTRODUCTION AND LITERATURE REVIEW	1
1.1 Introduction	1
1.2 Objective and conducted activities	1
1.3 Thesis Structure	3
1.4 Location and climate of study area	3
1.5 Literature review	4
Chapter 2: TECHNIQUES AND METHEDOLOGIES	8
2.1 Sampling of water samples	8
2.1.1 Sampling for hydrochemical analysis	8
2.1.2 Sampling for isotopes	9
2.2 Hydrochemical analyses	9
2.3 Environmental isotopes analyses	10
2.4 Geographic Information System (GIS) applications	11
2.5 Application of MODFLOW	12
Chapter 3: RESULTS AND DISCUSSION	15
3.1 Hydrogeological and hydrogeochemical characterization	15
3.1.1 Hydrogeological characterization	15
3.1.1.1 Geomorphological conditions	15
3.1.1.2 Lithostratigraphic conditions	18

CONTENT

3.1. 1.3 Groundwater and surface water characterization	
3.1.2 Hydrogeochemical conditions	
3.1.2.1 Spatial distribution of TDS and the major ions	25
3.1.2.2 Multivariate statistical analysis	30
3.1.2.3 Hydrochemical Facies and Salinization Processes	35
3.1.3 Isotopic integration (in-sight hydrogeological and	43
hydrogeochemical characterization)	
3.2 Coastal hazard analyses in the study area	48
3.2.1 Groundwater quality hazards	
3.2.1.1 Hazards of groundwater usage	
3.2.1.2 Hazard of soil salinity	
3.2.1.3 Seawater intrusion vulnerability	
3.2.1.4 Contaminant transport modeling in the groundwater of the	
study area	
3.2.2 Hydrologic hazards	72
3.2.2.1 Coastal erosion due to seawater rise	72
3.2.2.2 Extreme rainfall value analysis (EVA)	78
3.2.2.3 Hazard of flash flood	80
Summary and Conclusion	88
References	97
Arabic Abstract	

LIST OF FIGURES

Figure	Page
Figure (1-1): Location map of the study area.	4
Figure (2-1): Location map of the collected groundwater samples, northwest Sinai.	8
Figure (2-2): Schematic of Isotopic Ratio Mass Spectrometer (IRMS).	11
Figure (2-3): Modeling protocol (Prommer et al., 2002)	13
Figure (3-1): Geomorphological map of northwestern Sinai (compiled after Yousef and El-Shenawy, 2000).	17
Figure (3-2): Generalized stratigraphic column of Northwestern Sinai (after Geological Survey of Egypt, 1992).	19
Figure (3-3): Geologic map of northwest Sinai, Egypt (after Geological Survey of Egypt, 1992).	20
Figure (3-4): Map of North Sinai showing the location of the North Sinai	21
Figure (3-5): Hydrogeological cross sections along the study area, (El Osta, 2000).	22
Figure (3-6): Spatial distribution of TDS for groundwater samples in the studied area using ARCGIS.	26
Figure (3-7): Spatial Distribution of Cl- in the study area using ARCGIS.	27
Figure (3-8): Spatial Distribution of SO_4^{2-} in the study area using ARCGIS.	27
Figure (3-9): Spatial Distribution of HCO ₃ in the study area using	28

T : ~4	~ L	T: .		
List	OI	$\Gamma \iota \mathfrak{L}$	zur	es

Α	R	C(Ŧ	S
\Box	. 1 🗸 י	-	JI	L)

Figure (3-10): Spatial Distribution of Ca ²⁺ in the study area using	28
ARCGIS.	
Figure (3-11): Spatial Distribution of Mg ²⁺ in the study area using	29
ARCGIS.	20
Figure (3-12): Spatial Distribution of Na ⁺ in the study area using	•
ARCGIS.	29
Figure (3-13): Spatial Distribution of K ⁺ in the study area using	
Super GIS.	30
Figure (3-14): Hierarchical clustering analysis of groundwater	
samples in the study area.	32
Figure (3-15): Plot of loadings for the first two components with	
	35
varimax normalized rotation.	
Figure (3-16): Piper Diagram for groundwater samples in the study	37
area.	
Figure (3-17): Relation between Na and Cl for the studied	39
groundwater samples.	37
Figure (3-18): Ca and Mg ratio.	40
Figure (3-19): Relation between Na/Cl and EC.	40
Figure (3-20): Distribution of study groundwater samples on Gibbs	4.1
diagram.	41
Figure (3-21): Relationship between Ca + Mg-HCO ₃ -SO ₄ versus	4.0
Na-Cl for the studied groundwater samples.	42
Figure (3-22): The relationship between $\delta^{18}O$ and δD	46
Figure (3-23): Spatial distribution of δ^{18} O.	47
Figure (3-24): The relation between δ^{18} O and TDS	48
Figure (3-25): Salinity hazard risk map.	57
- · · · · · · · · · · · · · · · · · · ·	

Figure (3-26): GALDIT result: (A) Impact status of existing		
seawater intrusion; (B) distance from shore; (C)		
aquifer hydraulic conductivity (m/day); (D) height	62	
of groundwater level (amsl)(m); (E) saturated	02	
aquifer thickness (m); (F) Groundwater		
occurrence/aquifer type; (G) GALDIT Index.		
Figure (3-27): Conceptualization of the study area.	66	
Figure (3-28): Calibration of the model.	67	
Figure (3-29): Simulated head in the year 2017	68	
Figure (3-30): Drawdown in the head in the year 2017	68	
Figure (3-31): Pb concentration after 100 day	69	
Figure (3-32): Pb concentration at the end of the simulation.	69	
Figure (3-33): Cr concentration after 100 day.	69	
Figure (3-34): Cr after at the end of the simulation.	70	
Figure (3-35): Expected concentration of Pb during the simulated period in the continuous release scenario.		
period.	71	
Figure (3-37): Retarded velocity change with time.	72	
Figure (3-38): Geomorphologic rating along the shore in the study	75	
area.	13	
Figure (3-39): Erosion and accression areas along the shore in the	75	
study area	13	
Figure (3-40): Slope percentage of the study area using ARC GIS.	77	
Figure (3-41): Final CVI map of the study area.	78	
Figure (3-42): Exceedence Probability Function (Probability vs	90	
Rainfall Intensity)	80	

List of	Figures
Figure (3-43): Land use/ land cover map of the study area.	83
Figure (3-44): NVDI map of the study area.	85
Figure (3-45): Final FFBI map of the study area.	87

LIST OF TABLES

Table	Page	
Table (3-1): Results of major ions of groundwater samples in the		
study area.	24	
Table (3-2): Statistical analysis of major cations for groundwater	25	
samples in both aquifers.	25	
Table (3-3): Total variance for the collected groundwater samples.	34	
Table (3-4): Saturation indices of collected groundwater samples using SPSS 22.	38	
Table (3-5): Isotopic results of the collected groundwater samples.	44	
Table (3-6): Statistical analysis of the chemical and isotopic data.	44	
Table (3-7): Isotopic composition of the different possible recharge sources.	45	
Table (3-8): Egyptian standards for drinking and domestic uses.	50	
Table (3-9): TDS limits for water that can be used for drinking by	y 50	
livestock and poultry (McKee & Wolf, 1963).	30	
Table (3-10): Selected variables used in the WQI calculation and their recommended values (Rown et al., 1972).	52	
Table (3-11): WQI categories of collected groundwater samples according the classification of Rown et al., (1972)	52	
Table (3-12): Water quality requirements for some selected industries and processes, (National Academy of Science, 1972).	53	
Table (3-13): The indicators used in the model of hazard of soil salinization.	56	
Table (3-14): Categorization of the salinity hazard scores	57	
Table (3-15): Rating and weighting values of different parameters	56	

List of Tables

	according to their relative importance (Chachadi and	
	Lopo-Ferreira, 2001)	
Table(3-16):	Rating and weighting values of different	
	hydrogeological parameters according to their	59
	relative importance (Chachadi & Lopo-Ferreira	J
	2001)	
Table (3-17):	Rates of CVI and its categories (Gornitz et al 1994).	74
Table (3-18):	The fitness of the recorded metrological data set	79
Table (3-19):	Slope index rating	82
Table (3-20):	Landuse/land cover rating	83
Table (3-21):	Soil classification rating	84
Table (3-22):	Rating value of NVADI	86

ABSTRACT

Coastal hazards are of high concern because of their adverse effects or even catastrophic impacts. These hazards, either natural or human induced, constrain development prospective and endanger lives, properties and resources in the coastal zones, such as the area under study in the northwest of Sinai. Analysis and evaluation of coastal hazards is a mandatory task for proper and secured development where necessary protective and controlling actions are proposed.

The basic objective of this thesis is to investigate, analyze, and evaluate some hydrogeochemical, hydrogeological and meteorological hazards at northwestern coast of Sinai. An approach has been applied that integrates system characterization into hazard evaluation which functions weighting / rating indices techniques, numerical modeling and empirical formulation.

The study is based on results of literature review, field and laboratory work (39 groundwater samples have been sampled and analyzed for major cations, major anions, ¹⁸ O and ²H isotopic values), statistical treatment, numerical modeling, indices evaluation and categorization, GIS overlay and mapping.

The hydrogeological characteristics of the system (including geomorphological, lithostratigraphic and groundwater conditions) and its hydrogeochemical ones (including ions distribution, ion dominance, water types, principle components, origin of salinity, its evolution and modification processes,...etc..) have been determined and isotopically insighted.

The results of characterization are fed into the hazard analysis processes conducted in this work, which include: hazard of groundwater

ABSTRACT

consumption (drinking, irrigation, construction), soil salinization, sea water intrusion, contaminant transport in groundwater, sea water rise and coastal erosion, extreme rainfall and flash flood. The attributes of the different hazards are rated, weighed and mathematically interrelated in an overall hazard values which are mapped to locate the areas of high hazard potential, this is important for proposing protective and early preparedness measures to secure development processes in the study area.

The total salinity of the study groundwater varies in a wide range (from 692 ppm to 9384ppm). Two major hydrochemical facies exist , (a) the Cl-Na and SO₄- Na brackish water that dominates more than 90% of the samples reflecting a developed stage of salinity evolution under the effects of marine salts dissolution, surface evaporation before infiltration, cation exchange and Sabkha soil water contribution , (b) the HCO₃-Ca fresh water that dominates less than 10% of the samples reflecting an early stages of mineralization and are located close to El-Salam Canal where surface water from the canal seeps to dilute the saline water in the aquifer.

The ¹⁸O and ²H isotpic content revealed that the predominant recharging source of the groundwater under study is meteoric water. Rain water falls on the coastal and inland sand dunes and seeps to cover and bond Sabkha deposits in the depression between sand dunes. The bonding water leaks to the aquifer with salts concentrated through dissolution of marine salts from Sabkhas.

The high salinity and major ions concentration render about 90% of the collected groundwater samples posing health hazard for human drinking, about 31% and 85% posing hazard for horses and poultry,