

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

Ain Shams University, Faculty of girls, for Art, Science and Education **Physics Department**

STUDY OF SLOW NEUTRON INTERACTION WITH SOLIDS USING FIXED SCATTERING ANGLE SPECTROMETER

THESIS Submitted for the Degree of Ph.D.in Physics

TO**Physics Department** Faculty of Girls, Ain Shams University

> ΒY Fathy El-Sayed Salama (M.Sc.)

SUPERVISORS

Prof. Dr. Mansour Hasab El-Naby

Faculty of Girls

Ain Shams University

Prof. Dr. Mamdouh Adib

Atomic Energy Authority

Cairo, Egypt

Prof. Dr. Refaat Mahmoud Ali Maayouf Prof. Dr. Enayat Awad Saad

Atomic Energy Authority

Cairo, Egypt

Atomic Energy Authority

Cairo, Egypt

1998

.

.

.

-

• • .

Ain Shams University, Faculty of girls, for Art, Science and Education Physics Department

A Thesis For Ph. D. in Physics Fathy EL-Sayed Salama

TITLE OF THESIS STUDY OF SLOW NEUTRON INTERACTION WITH SOLIDS USING FIXED SCATTERING ANGLE SPECTROMETER

SIGNATURE

THESIS SUPERVISORS

Prof.Dr.Mansour Mohamed Hasab EL-Naby 1. Professor of Solid State Physics Ain Shams University M. Adi Prof. Dr.Mamdouh Adib Professor of Neutron Physics Deputy Chairman of Reactors Division Atomic Energy Authority 3. Prof.Dr. Refaat Mahmoud Ali Maayouf Professor of Neutron Physics Head of Reactor Physics Department Atomic Energy Authority 4 Prof.Dr. Enavat Awad Saad Professor of Theoretical Reactor Physics

Date of Research: / /199 Date of Approval: / /199

Approval Stamp

Atomic Energy Authority

Approval of Faculty Council: / /199
Approval of University Council: / /199

ACKNOWLEDGMENTS

I would like to express my appreciation, gratitude and sincere thanks to my supervisors

- 1 Professor Dr. Mansour Mohamed Hasab EL-Naby Professor of Solid state physics, Ain Shams University, for his interest, helpful advises and his kind supervision during this work.
- 2 Professor Dr. Mamdouh Adib. Professor of Neutron physics, Deputy Chairman of Reactors Division, Atomic Energy Authority, For Suggesting the problem of this work, his Continuous guid, Fruitful discussions and supervision during this work.
- 3 Professor Dr. Refaat Mahmoud Ali Maayouf, Head of Reactor Physics department, Atomic Energy Authority For his Keen interest during the course of this work and kind supervision.
- 4 Professor Dr. Enayat Awad Saad
 Professor of Theoretical Reactor Physics. Atomic Energy
 Authority for her continuous help and kind supervision
 Acknowledgments are also extended to
- 1 Professor Dr. Hosnia Abo Zaid
 Head of Physics Department, for her interest and kind
 encouragement.
- 2 The scientific staff members of the Physics Dept., Faculty of Girls, for their valuable discussions raised during the scientific meetings.
- 3 The Co-operation of Neutron Physics lab and Reactor operation Staff who provided the Smooth and long hours required for measurements.
- 4 Dr. Kamelia Naguib Assistant Professor Theoretical Neutron Physics for her Valuable help in developing the computer codes required for calculations.

STANKATENTS

Neutron transmission and reflection at a copper single crystal bout along the (200) plane were studied with the fixed-scattering angle spectrometer (FSAS) installed at the ET-RR-1 reactor. The FSAS used consists of a double synchronized rotor system whose physical parameters are given. The transmission was measured for neutron wavelengths between 0.21 and 0.47 nm at various orientations of the (200) plane with respect to the incident beam. The transmission data were analyzed using the general formula for the attenuation of thermal neutrons by an imperfect single crystal. An adapted computer program was developed in order to perform the required calculations. The calculated transmission data were found to be in good agreement with the measured ones within the

statistical accuracy rapid solved of the heatron filtering characteristics of Cu single crystal as a function of its physical parameters (mosaic spread, temperature, thickness), and cutting plane were given. It was found that the filtering characteristics of Cu, cut along (200) plane, is preferable than that one cut along (111) plane having the same physical parameters them that one cut along (111) plane having

The calculations using the ISCANF-1 program show that a 3cm thick crystal cut along (200) plane cooled at liquid nitrogen temperature is sufficient for removing fast neutrons of energies higher than 1eV, while providing reasonable intensity of the transmitted thermal neutrons. Moreover, the calculations show that the distortion of the transmitted thermal neutron flux caused by the strong parasitic Bragg scattering planes can be avoided when the direction of the [200] was inclined by 1° with respect to the incident neutron beam direction.

CONTENTS

		Page	
Acknowledgments			
Abstract			
Contents			
 			
List of Figures List of Tables		V1 Viii	
Summary		ix	
CHAPTER I			
SLOW NEUTRONS			
1.1:	Slow Neutrons as Probe in Condensed Matter		
	Science	1	
1.2 :		4	
1.3 :		7	
1.5:	Neutron Scattering by Assemblies of Nuclei in	11	
	Solids .	11	
	1.3.1 Diffraction of Neutrons by a Polycrysta-	, ,	
	lline Element .	13	
	1.3.2 Diffraction of Neutrons by Single Crystals	15	
1.4:	The Time-Of-Flight Method for Neutron Crystal	22	
	Structure Investigation .		
CHADTED II			
CHAPTER II			
EXPERIMENTAL ARRANGEMENTS			
2.1:	The ET-RR-1 Reactor	25	
2.2:	Fixed Scattering Angle Spectrometer	26	
	2.2.1 construction of the Rotor System	29	
	2.2.2 Construction of the Rotating Collimator	22	
2.3:	System The Basic Principle of the Magnetic Suspension	33	
2.5 .	System	34	
	Julian	D T	

t

		Page		
2.4:	Rotation and Phase Stabilization of the Double			
	Rotor System	36		
	2.4.1 Rotation Stabilization Unit	40		
	2.4.2 Phase Stabilization Unit	42		
2.5:	Data Acquisition System.	45		
	2.5.1 Channel Dead Time	47		
	2.5.2 Input Blocking Time	48		
CHAPTER III				
TIME SCALE CALIBRATION OF THE FSAS				
3.1:	Introduction .	51		
3.2:	Determination of the Angular Velocity of the			
	Rotors .	52		
3.3:	Start Unit for PCA	57		
3.4:	Zero Time Scale Determination for the Curved			
	Slot Rotor .	61		
	3.4.1 Principle of the Fast Neutron Method	61		
	3.4.2 Fast Neutron Distribution Measurements	66		
3.5:	Zero Time Scale of Double Rotor System	68		
	3.5.1 Results and Discussion	70		
CHAPTER IV				
PHY	SICAL PARAMETERS AND EXPERIMENT	ΓAL		
CHECK-UP OF THE FSAS				
4.1:	Neutron Transmission Through FSAS	75		
4.2:	Linearity of the Time Scale .	79		
4.3 :	The Resolution Function	82		
4.4:	Neutron Beam Space Distribution	87		