Supercharged end-to-side anterior interosseous nerve transfer to the motor branch of ulnar nerve in high ulnar nerve injuries

Thesis
Submitted for partial fulfillment of M.D. degree in orthopedic surgery

By
Islam Koriem Fattouh
M.B.B.Ch., M. Sc. (Orthopedic Surgery)

Under Supervision of

Prof. Dr. Mohamed Mostafa El Mahy

Professor of Orthopedic Surgery Faculty of Medicine, Ain Shams University

Dr. Ahmed Naeem Atiyya

Assistant professor of Orthopedic Surgery Faculty of Medicine, Ain Shams University

Dr. Ramy Ahmed Diab

Assistant professor of Orthopedic Surgery Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

I would like to begin by thanking **ALIAH** for his guidance and protection, may this blessing always guide us.

Words stand short when they come to express my gratefulness to my supervisors.

I would like to express my deep gratitude and appreciation to **PROF. DR. Mohamed Mostafa El Mahy** for his great supervision, great help, available advice and continuous encouragement. It is an honour to work under his guidance and supervision.

I also sincerely express my great appreciation to **DR. Ahmed Naeem Atiyya** for his advice, valuable guidance and all efforts he offered to make this work possible. Without his support it would have been impossible for this study to be achieved in this form.

I also sincerely express my great appreciation to *Dr. Ramy Ahmed Diab* for his sincere and valuable guidance and encouragement.

Last but not least, I dedicate this work to *my family* whom without their sincere emotional support this work could not have been completed.

Contents

Title	Page No.
List of Abbreviations	i
List of Figures	ii
List of Tables	v
Introduction	1
Aim of the Work	5
Review of Litrature	7
Patients and Methods	39
Results	61
Discussion	82
Summary and Conclusion	93
Case Presentation	97
References	117
Arabic Summary	

List of Abbreviations

AIN Anterior interosseous nerve

DASH Disability of arm, shoulder and hand

DBUN Deep branch of ulnar nerve

EMG Electromyography

ETE End to end

ETS End to side

FCU Flexor carpi ulnaris

FDP Flexor digitorum profundus

IUR Isolated ulnar nerve repair

M Medical research council grade

NCV Nerve conduction velocity

P value Probability value

PQ Pronator quadratus

ROM Range of motion

SD Standard deviation

SETS Supercharged end to side

SPSS Statistical program for social science

List of Figures

Fig. No	. Title	Page No.
Figure (1): Diagram showing idea of end to end nerve transfer	13
Figure (2): Diagram showing idea end to side nerve transfer	14
Figure (3): Diagram showing supercharged end to side nerve transfer	: 15
Figure (4): Diagram showing course and branches of the ulnar nerv	e 20
Figure ((5): Histological section of ulnar nerve at 20 mm apart	, A
	is at 25mm proximal to radial styloid and B is at 45 is	
	level. the motor fascicules group (M) is located at	the
	ulnar dorsal position	
Figure (6): Diagrammatic schema of the fascicular groups of the u	
	nerve at the wrist and forearm. The indicated level of	
	sections is in reference to the distance proximal to the ra	
	styloid	
Figure	(7): Classification of the type of high ulnar nerve inj	•
.	according to the level of transection.	
Figure	(8): Branches of the anterior interosseous nerve within	
	dissected pronator quadratus a branch entering	
	interosseous membrane; AIN, anterior interosse nerve; PQ, pronator quadratus muscle	
Figure	(9): Showing the different types of innervation of	
riguie	pronator quadratus (a) in sequence innervation of	
	pronator quadratus (b) terminal arborisation pattern	
	innervation	
Figure	(10): The courses of the AIN and DBUN before the	
8	transposition are shown in grey. Interrupted li	
	illustrate their positions after the transfer. The location	
	the coaptation is depicted by the red dot	
Figure (11): Farber experimental groups	34
Figure	(12): Schematic diagrams of repairing high ulnar ne	erve
	injury with early nerve protection of ante	rior
	interosseous nerve in reverse end-to-side neurorrhaph	y 35
Figure	(13): A: Wasting in the1st web space and guttering	В;
	wasting in the hypothenar eminence C: Partial claw h	and
	deformity	46

List of Figures (cont ..)

Fig. No.	Title	Page No.
Figure (14):	Positive Froment's sign	48
_	A Ulnar nerve injury with neuroma formation at	
ne	erve edges B: ulnar nerve transposition and repair v	vith
ep	pineurial sutures C: tension free repair is ensu	red
th	aroughout all range of elbow motion	50
Figure (16):	Marking the skin incision	51
Figure (17):	Division of ulnar nerve at the Guyon's canal	52
Figure (18)	: Separation of the ulnar nerve into motor fascion	eles
	plack arrow) and sensory fascicles	
_	Identification of the anterior interosseous bundle a	
	nters the pronator quadratus muscle	
0 , ,	Dissection of the anterior interosseous nerve inside	
•	ronator quadratus.	
	Division of the anterior interosseous nerve before	
	ranching.	
	: End to side coaptation of the anterior interosse erve to the motor fascicles of the ulnar nerve	
	: Bar chart between SETS group and isolated rep	
	roup according to sex	
_	: Bar chart between SETS group and isolated rep	
_	roup according to age (years)	
-	Bar chart comparing outcome between SETS gro	
	nd isolated repair group at 3 months follow up	_
	Bar chart comparing outcome between SETS gro	
_	nd isolated repair group at 6 months follow up	-
	Bar chart comparing outcome between SETS gro	
_	nd isolated repair group at 12 months follow up	-
Figure (28):	Froment's sign turned negative and good lateral pin	.ch 99
Figure (29):	Showing adduction abduction improvement	100
Figure (30):	Abolishment of clawing	101
_	Froment's sign turned negative	
Figure (32):	Abolishment of clawing	103
Figure (33):	Froment's sign turned negative	105

List of Figures (cont ..)

Fig. No.	Title	Page No.
Figure (3	4): Residual wasting of hypothenar muscles and	incision
	hypertrophic scar.	105
Figure (3	5): Abolishment of clawing	106
Figure (3	6): Froment's sign turned negative and good later	al pinch108
Figure (3	37): Showing adduction abduction improvement	ent with
	residual guttering	108
Figure (3	8): Abolishment of clawing	108

List of Tables

Table No.	Title	Page No.	
Table (1): S	howing distribution of patients according to occupation	on	43
Table (2): B	Sirch's grading	!	58
Table (3): M	Modified Brand's criteria		59
Table (4): (Comparison between SETS group and isolated repair	group	
ac	ccording to demographic data		63
Table (5): C	Comparison between SETS group and isolated repair	group	
ac	ccording to handiness	(65
Table (6): (Comparison between SETS group and isolated repair	group	
ac	ccording to side of injury		65
Table (7): C	Comparison between SETS group and isolated repair	group	
ac	ccording to level of injury		66
Table (8): C	Comparison between SETS group and isolated repair	group	
ac	ccording to outcome after 3 months	(68
Table (9): C	Comparison between SETS group and isolated repair	group	
ac	ccording to outcome after 6 months		71
Table (10):	Comparison between SETS group and isolated	repair	
gı	roup according to outcome after 1 years		73
Table (11):	Comparison between SETS group and isolated	repair	
gı	roup with level I injury. (N) Stands for number of path	ients	76
Table (12):	Comparison between SETS group and isolated	repair	
gı	roup with level II injury		78
Table (13):	Comparison between SETS group and isolated	repair	
gı	roup with level III injury		79

Introduction

Ulnar nerve injury results in denervation of the intrinsic musculature of the hand which results in significant functional deficit, including weakness in grip power and key pinch. Despite the advances in microsurgical repair, the prognosis of a high level ulnar nerve injury is usually considered poor in terms of potential for motor recovery of the distal muscles of the hand. (1)

Most of the series reported only 20% of M4 muscle power when the repair is performed in a position around the level of the elbow, irrespective of the use of grafts. (2-3) Due to these limited results obtained with the nerve repair, it has been recommended that distal tendon transfers should be offered as the first-choice surgical intervention for such cases, discouraging the nerve surgery. (4-5) However, tendon transfers in this situation are considered secondary salvage procedures and have been found to give only limited results. (6,7)

With such a poor recovery potential, consideration can be given to a nerve transfer from the terminal branch of the anterior interosseous nerve to the deep motor branch of the ulnar nerve. This provides an expendable donor within close proximity to the target muscles that can be directly coapted to the motor branch without the need for an interposition graft. (8)

Nerve transfers are based on the theory that it converts the proximal nerve injury into a distal nerve injury by transferring an unimportant nerve to the more critical or important nerve. (9)

This procedure was first performed in 1997 by Wang and Zhu, who demonstrated transfer of the anterior interosseous nerve to the ulnar motor branch in cadavers and clinically in an end to end fashion. (10)

This procedure allows early reinnervation to motor endplate which is useful to preserve the function of Schwann cells and prevent muscle atrophy, allowing better functional recovery after ulnar nerve injury. (8)

The results of end to end transfer provide some improvement to prevent clawing, improve pinch strength, and obviate the need for tendon transfers. However, in this conventional nerve transfer, the target organs are totally innervated by the transferred nerve and not by the ulnar nerve so that the original nerve reinnervation is abandoned totally. These factors lead to incomplete functional recovery

where the best result gain was not more than grade 3 recovery of muscle strength by medical research council scale. (11)

Recent studies have demonstrated that nerve transfer can be done in end to side fashion where the donor nerve could sprout through the epineurial window of the damaged recipient nerve, establish axon end plate connections at early time and doubly innervate target organs by both a donor and original nerve. (12)

Utilizing this idea, a supercharged end-to-side (SETS) nerve transfer technique can use the anterior interosseous nerve to supplement, or "supercharge," the motor fascicles of the ulnar nerve, which involves diverting the normal-functioning median nerve motor fibers to the motor group of the ulnar nerve in the distal forearm augmenting the injured recipient nerve with additional motor axons at an early stage, while leaving the proximal ulnar nerve free for potential regeneration. This technique might be the potential effective treatment choice for the functional recovery of high ulnar nerve injury. (13)

