

"Pharmacological Study on the Neuroprotective Effect of Selegiline in 3-Nitropropionic Acid-Induced Experimental Animal Model of Huntington's Disease Phenotype"

A thesis submitted in partial fulfillment of the requirements for the master degree in Pharmaceutical Sciences (Pharmacology and Toxicology)

Presented by:

Sara Abdel Moneim Abdel Zaher Wahdan B.Sc. of pharmaceutical sciences, ASU, 2008. Demonstrator of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Under the supervision of:

Prof. Amani Emam Khalifa

Strategic Planning Consultant for 57357 Children Cancer Hospital and Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Dr. Mariane George Tadros

Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Faculty of Pharmacy, Ain Shams University

2014

" دراسة تأثير دواء سيليجيلين الواقي للخلايا العصبية في مرض هنتجتون المحدث تجريبيا بواسطة حمض ٣ نيتروبروبيونيك "

رسالة توطئة للحصول على درجة الماجستير في العلوم الصيدلية (الأدوية و السموم)

مقدمة من:

سارة عبد المنعم عبد الظاهر وهدان بكالوريوس صيدلة – جامعة عين شمس (٢٠٠٨) معيدة بقسم الأدوية و السموم - كلية الصيدلة - جامعة عين شمس

تحت إشراف:

أ د/أماني إمام خليفة

مستشار التخطيط الاستراتيجي بمستشفي ٥٧٣٥٧ لسرطان الأطفال وأستاذ الأدوية و السموم-كلية الصيدلة - جامعة عين شمس

د/ماریان جورج تادرس

مدرس الأدوية و السموم- كلية الصيدلة- جامعة عين شمس

كلية الصيدلة - جامعة عين شمس

7.12

Pre-requestic Post-Graduate Courses

Besides the work presented in this thesis, the candidate has attented the following courses:

General courses:

- 1-Instrumental analysis
- 2-Physical pharmacy
- 3-Statistics
- 4-Computer skills

Special courses:

- 1- Pharmacology
- 2- Clinical pharmacology and therapeutics
- 3- Neuropharmacology
- 4- Molecular pharmacology
- 5- Selected topics in pharmacology and toxicology

She successfully passed examination in these courses with general grade **Excellent.**

Head of pharmacology and Toxicology Department

Prof. Ebtehal El Demerdash

Acknowldgments

No words can be ever be said expressing my deep thanks to ALLAH.

I am greatly thankful to my great professor and thesis advisor, professor Amani Emam Khalifa, Professor of pharmacology and toxicology, Faculty of Pharmacy, Ain Shams University, who has made this work possible by her continuous guidance, support and indispensable help.

I am greatly thankful to Dr Mariane George Tadros, Lecturer of pharmacology and toxicology, Faculty of Pharmacy, Ain Shams University, for her continuous guidance, support and help in results interpretation and thesis writing.

I would like to express my appreciation and thanks to Professor Ebtehal El Demerdash, the head of Pharmacology and Toxicology department, Faculty of Pharmacy, Ain Shams University, for her help and support.

I would like to thank Dr Adel Bakir, Professor of Pathology, Faculty of Medicine, Cairo University for his great effort in accomplishing the histological investigations and Dr Shaimaa Masloub, Assistant lecturer of Pathology, Faculty of Dentisery, Ain Shams University, for accomplishing the immunohistochemical analysis.

I would like to thank my dear colleagues MSCC Eman Mantawy and MSCC Esther Tharwat, Assistant lecturers of pharmacology and toxicology, Faculty of Pharmacy, Ain Shams University, for their great help in the practical work.

It is my great pleasure to thank all members of Pharmacology and Toxicology department, Faculty of Pharmacy, Ain Shams University, for their great help and support.

Finally, I would like to express my deep gratefulness and thanks to my family for their continuous moral and emotional support.

Abstract:

3-Nitropropionic acid (3-NP), a mitochondrial toxin, is considered a reliable agent for inducing HD-like phenotype in experimental animals. Reduction of prepulse inhibition (PPI) of acoustic startle response, locomotor hypoactivity, increased oxidative stress, activation of apoptotic cascade and bilateral striatal lesions are the major manifestations of 3-NP-induced neurotoxicity. Selegiline is a non-competitive monoamine oxidase-B (MAO-B) inhibitor with previously reported antioxidant and antiapoptotic effects. The present study was designed to investigate neuroprotective effect of selegiline on 3-NP induced neurotoxicity. Rats administered 3-NP (20 mg/kg, i.p.) for four consecutive days exhibited PPI deficits, locomotor hypoactivity, increased striatal and cortical malondialdehyde (MDA) and reduced respective glutathione (GSH) level, catalase and superoxide dismutase (SOD) activities. Changes in the level of apoptotic regulatory gene expressions were demonstrated as increased striatal and cortical caspase-3 and Bax expression and decreased respective Bcl2 expression. Selegiline was given by i.p. injection at doses 2.5, 5 and 10 mg/kg, 3 days prior to- and continued daily, 30 minutes before 3-NP administration. The high dose levels of selegiline (5 and 10 mg/kg), significantly increased locomotor activity, improved PPI, reduced striatal and cortical MDA, caspase-3 and Bax and increased respective GSH level, catalase and superoxide dismutase activities and Bcl2 expression. Selegiline at dose 2.5 mg/kg could only reverse some of the manifestations of 3-NP-induced neurotoxicity. It could significantly improve PPI, reduce striatal MDA level and Bax expression, and increase striatal GSH level, catalase and superoxide dismutase activities. It could also significantly increase cortical superoxide dismutase level and decreased cortical Bax expression. Histological examination further affirmed the neuroprotective effect of high dose levels of selegiline against 3-NP toxicity. Taken together, these results suggest that selegiline attenuate 3-NP-induced neurotoxicity. This neuroprotective effect may be related to antioxidant properties and antiapoptotic effects.

Key words: 3-nitropropionic acid; Selegiline; Prepulse inhibition; Glutathione; Caspase-3

List of contents

Subject	Page
Introduction	1
I- Huntington's disease (HD)	1
1-History	1
2-Epidemiology	2
3-Genetic basis	3
4-Neuropathology	5
5-Clinical course	10
6-Diagnosis	16
7-Clinical management	18
II- Experimental models for HD	21
III- 3-Nitropropionic acid model	27
IV- Potential therapies for Huntington's disease	31
V- Selegiline	36
Aim of the work	43
Materials and methods	45
I-Experimental design	45
II-Animals	47
III-Materials	48
IV-Methods	56
V-Statistical analysis	71
Results	72
Discussion	108
Summary and conclusions	115
References	119
Arabic summary	

List of Abbreviations

3-NP	3-Nitropropionic acid
A	Absorbance
AD	Alzheimer's disease
AIF	Apoptosis inducing factor
ANOVA	Analysis of variance
ANT	adenine nucleotide translocator
ARE	Antioxidant response elements
ASR	Acute startle response
ATP	Adenosine triphosphate
Bax	Bcl2-associated X protein
Bcl2	B-cell-lymphoma 2
Bcl xl	B-cell-lymphoma-extra large
BDNF	Brain derived neurotrophic factor
Вр	Base pairs
BSA	Bovine serum albumin
CAG	Cytosine-Adenine-Guanine
CDDO	2-cyano-3,12-dioxooleana 1,9-dien-28-oic acid
cDNA	Complementary DNA
c-fos	Cellular oncogene-fos
CNTF1	Ciliary neurotrophic factor 1
CYP 450	Cytochrome P 450
DA	Dopamine
Da	Daltons
dB	Decibel
DHBS	3,5-Dichloro-2-hydroxybenzene sulfonic acid
DNA	Deoxyribonucleic acid
DTNB	5,5' dithiobis 2-nitrobenzoic acid
ETC	Electron transport chain
FAD	Flavine adenine dinucleotide
GABA	Gamma amino buteric acid
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
GDNF	Glial call derived neurotrophic factors
GSH	Reduced glutathione
GPx1	glutathione peroxidase-1
Н&Е	Hematoxylin and eosin
H2O2	Hydrogen peroxide
HD	Huntington's disease
HDACIs	Histone deacetylase inhibitors
HIV	Human immunodeficiency virus
HO-1	Heme-oxygenase-1
Htt	Huntingtin
Hsps	Heat shock proteins

IA	Ibotenic acid
i.p.	Intraperitoneal
IR	Infrared
IT 15	Interesting transcript 15
i.v.	Intravenous
KDa	Kilo Dalton
KA	Kianic acid
LD50	Median Lethal Dose
MAO-B	Monoamine oxidase B
MDA	Malondialdehyde
mPTP	Mitochondrial permeability transition pore
MPTP	1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
mRNA	Messenger RNA
MSNs	Medium-sized spiny neurons
NADPH	Nicotinamide adenine dinucleotide phosphate,
	reduced form
NBQX	6-nitro-7-sulfonylbenzo (f)quinoxaline-2,3-dione
NGF	Nuclear growth factor
NRF-1	Neuclear respiratory factor-1
Nrf2	Nuclear factor-erythroid 2-related factor-2
NMDA	
	N-methyl-D-aspartate
NO2	Nitric oxide
O2.	Superoxide radical
OH.	Hydroxyl radical
OD	Optical Density
PD	Parkinson's disease
PGC-1α	Peroxisome proliferator-activated receptor gamma
77.17	coactivator 1- alpha
PPAR-γ	Peroxisome proliferator-activated receptor-gamma
PPI	Prepulse inhibition
QA	Quinolinic acid
S.C.	Subcutaneous
ROS	Reactive oxygen species
RNS	Reactive nitrogen species
Rpm	Round per minute
SDH	Succinate dehydrogenase
SEM	Standard error of mean
SOD	Superoxide dismutase
SSRIs	Selective serotonin reuptake inhibitors
TBA	Thiobarbituric acid
TCA	Tricarboxylic acid
TBARS	Thiobarbituric acid reactive substances
TBS	Tris buffered saline
TUDCA	Tauroursodeoxycholic acid
U	Units
	* ***

UV	Ultraviolet
VDAC	Voltage-dependent anion channel
YAC	Yeast artificial chromosome

List of tables

Table	Title	Page
number		
i	Knock-in mouse models	26
ii	LD 50 of selegiline in different species through different routes.	42
1	Effects of different doses of selegiline on locomotor activity in 3-NP-treated rats.	73
2	Effects of different doses of selegiline on % Prepulse inhibition (%PPI) of acoustic startle response in 3-NP treated rats.	76
3	Effects of different doses of selegiline on striatal and cortical levels of malondialdehyde (MDA) in 3-NP-treated rats.	79
4	Effects of different doses of selegiline on striatal and cortical level of reduced glutathione (GSH) in 3-NP-treated rats.	82
5	Effects of different doses of selegiline on striatal and cortical catalase activity in 3-NP-treated rats.	85
6	Effects of different doses of selegiline on striatal and cortical superoxide dismutase (SOD) activity in 3-NP-treated rats.	88
7	Effects of different doses of selegiline on striatal and cortical caspase-3 expression in 3-NP-treated rats.	93
8	Effects of different doses of selegiline on striatal and cortical Bax expression in 3-NP-treated rats.	98
9	Effects of different doses of selegiline on striatal and cortical Bcl2 expression in 3-NP-treated rats.	103

List of figures

Figure	Title	Page
number		
i	Schematic representation of Htt protein structure.	4
ii	Aberrant basal ganglia circuitry in early and late-	6
	stage HD.	
iii	Mitochondrial abnormalities in HD.	9
iv	Prepulse Inhibition	14
V	Neurotoxicity pathways induced by 3-NP.	30
vi	Chemical structure of selegiline	36
vii	Locomotor activity detector	53
viii	Startle reflex apparatus.	54
ix	Standard calibration curve of MDA	61

Figure number	Title	Page
1	Effects of different doses of selegiline on locomotor activity in 3-NP-treated rats.	74
2	Effects of different doses of selegiline on % Prepulse inhibition (% PPI) of acoustic startle response in 3-NP treated rats.	77
3	Effects of different doses of selegiline on striatal and cortical levels of malondialdehyde (MDA) in 3-NP-treated rats.	80
4	Effects of different doses of selegiline on striatal and cortical level of reduced glutathione (GSH) in 3-NP-treated rats.	83
5	Effects of different doses of selegiline on striatal and cortical catalase activity in 3-NP-treated rats.	86
6	Effects of different doses of selegiline on striatal and cortical superoxide dismutase (SOD) activity in 3-NP-treated rats.	89
7	Immunohistochemical staining of striatal caspase-3-positive cells of the vehicle treated-group, 3-NP-treated group, 3-NP + selegiline (2.5 mg/kg) treated group, 3-NP+selegiline (5 mg/kg) treated group, 3-NP + selegiline (10 mg/kg) treated group and selegiline alone (10 mg/kg) treated group.	91
8	Immunohistochemical staining of cortical caspase-3-positive cells of the vehicle treated-group, 3-NP-treated group, 3-NP + selegiline (2.5 mg/kg) treated group, 3-NP+selegiline (5 mg/kg) treated group, 3-NP + selegiline (10 mg/kg) treated group and selegiline alone (10 mg/kg) treated group.	92
9	Effects of different doses of selegiline on striatal and cortical caspase-3 expression in 3-NP-treated rats.	94
10	Immunohistochemical staining of striatal Bax-positive cells of the vehicle treated-group, 3-NP-treated group, 3-NP + selegiline (2.5 mg/kg) treated group, 3-NP+selegiline (5 mg/kg) treated group, 3-NP + selegiline (10 mg/kg) treated group and selegiline alone (10 mg/kg) treated group.	96
11	Immunohistochemical staining of cortical Bax-positive cells of the vehicle treated-group, 3-NP-treated group, 3-NP + selegiline (2.5 mg/kg) treated group, 3-NP+selegiline (5 mg/kg) treated group, 3-NP + selegiline (10 mg/kg) treated group and selegiline	97

	alone (10 mg/kg) treated group.	
12	Effects of different doses of selegiline on striatal and cortical Bax expression in 3-NP-treated rats.	99
13	Immunohistochemical staining of striatal Bcl2-positive cells of the vehicle treated-group, 3-NP-treated group, 3-NP + selegiline (2.5 mg/kg) treated group, 3-NP+selegiline (5 mg/kg) treated group, 3-NP + selegiline (10 mg/kg) treated group and selegiline alone (10 mg/kg) treated group.	101
14	Immunohistochemical staining of cortical Bcl2-positive cells of the vehicle treated-group, 3-NP-treated group, 3-NP + selegiline (2.5 mg/kg) treated group, 3-NP+selegiline (5 mg/kg) treated group, 3-NP + selegiline (10 mg/kg) treated group and selegiline alone (10 mg/kg) treated group.	102
15	Effects of different doses of selegiline on striatal and cortical Bcl2 expression in 3-NP-treated rats.	104
16	Histological findings in rat brain of different treatment groups.	106