

محضر

اجتماع لجنة الحكم على الرسالة المقدمة من الطبيب محمد خلف عبد الله محمد للحصول على درجة الدكتوراه في جراحة العظام

عنوان الرسالة باللغة العربية : علاج الكسور الغير الملتئمة بالعظام الطويلة عن طريق ترقيعها باستخدام لب العظام منزوعة المعادن

باللغة الانجليزية:

Demineralized Bone Matrix for Tratment of iong bones non union

بناءا على موافقة الجامعة بتاريخ / / ٢٠١٤ تم تشكيل لجنة الفحص والمناقشة للرسالة المذكور أعلاه على النحو التالي:

عن المشرفين

١ - الأستاذ الدكتور/ اشرف عبد القادر النحال

ممتحن داخلي

٢ - الأستاذ الدكتور / احمد محمود خليف

ممتحن خارجي طب بنها

٣- الأستاذ الدكتور / حسن حسين احمد

بعد فحص الرسالة بواسطة كل عضو منفردا وكتابة تقارير منفردة لكل منهم العقدت اللجنة

مجتمعه في يوم ١٥ / ٩ / ٢٠١٤ بقاعة قسم ١٨ عظام

بكلية الطب - جامعة القاهرة ، وذلك لمناقشة الطالب في جلسة علنية في موضوع الرسالة والنتائج التي توصل إليها وكذلك الأسس العلمية التي قام عليها الطالب ،

قرار اللجنة

J-925___

أعضاء اللجنة:

المثرف الممتحن

الممتحن الخارجي

الممتحن الداخلي

Demineralized Bone Matrix for Treatment of long bones non union

A thesis Submitted for

Partial Fulfillment of the MD Degree in Orthopedic Surgery

By Mohamed Khalaf Abdullah Mohamed M.B.B.Ch, M.Sc.

Under Supervision of

Prof. Dr. Ashraf Abdel Kader Al-Nahal

Professor of Orthopedic Surgery Faculty of Medicine Cairo University

Prof. Dr. Alaa Aldeen Mohey Aldeen

Professor of Orthopedic Surgery Faculty of Medicine Cairo University

Prof. Dr. Ahmed Mahmoud Mohamed Attaya

Professor of Orthopedic Surgery Faculty of Medicine Cairo University

ACKNOWLEDGEMENT

Thanks to ALLAH, Firstly and lastly.

It is a pleasure to express my deepest gratitude to prof. Dr. Ashraf Abdel Kader Alnahal, Professor of orthopedic surgery, Cairo University, for his endless support.

I would like to express my deepest gratitude to my supervisor, prof. Dr. Alaa Mohey Aldeen professor of orthopedic surgery, Cairo University.

I would like to express my deepest gratitude to my supervisor, prof. Dr. Ahmed Mahmoud Mohamed Attaya, professor of orthopedic surgery, Cairo University.

I pay a special tribute to their continuous guidance in supervising every section of this thesis. Their continuous encouragement through the work and their sincere and valuable advice were indispensable. But most of all I am indebted for the knowledge and science they have passed on to me.

I am also indebted to my professors and all the teaching staff in orthopedic department, who all shared in building up my knowledge and in passing their vast experience to me.

I am also deeply indebted and grateful to my family for their continuous interest, and encouragement throughout this work.

ABSTRACT

The treatment of posttraumatic skeletal conditions such as delayed union, nonunion, malunion, and other problems of bone loss are challenging. In most cases, restoration of alignment and stable fixation of the bone is all that is necessary to achieve a successful reconstruction. However, in many cases, adjunctive measures such as bone-grafting or bone transport is required to stimulate bone-healing and fill bone defects.

The use of iliac crest autologous bone graft is widely considered as gold standard for a number of reasons, including osteogenic, osteoconductive, and osteoinductive properties and the lack of disease transmission or of immunogenicity. But the use of autograft may be at risk of major drawbacks, such as limited availability and variable quality of the graft, hematoma, infection, increased operative time and bleeding, chronic donor site pain.

In this study we proved that using demineralized bone matrix in treatment long bone nonunion can be good alternative for iliac bone graft especially in selected cases.

Still there's alot of limitation for using DBM here in Egypt due to lack of availability and increased its cost.

<u>Keywords:</u> Non-united fracture, Nonunion, DBM, demineralized bone matrix, Iliac bone graft

LIST OF CONTENTS

chapter	Subject	age
	List of figures	III
	List of Tables	V
	List of abbreviations	VI
1	Introduction	6
2	Literature Review	8
	☐ Fracture Healing	8
	 Direct fracture healing 	14
	1. Contact healing	15
	2. Gap healing	16
	 Indirect fracture healing 	19
	The Acute Inflammatory Response	20
	2. Recruitment of Mesenchymal Stem Cells	22
	Generation of a Cartilaginous and a Periosteal Bony Callus	23
	4. Revascularization and Neoangiogenesis at the Fracture Site	24
	5. Mineralization and Resorption of the Cartilaginous Callus	25
	6. Bone Remodeling	26
	☐ Fracture Nonunion	29
	 Diagnosis of Nonunion 	31
	Clinical evaluation	32
ļ.	2. Radiological evaluation	33
	3. Laboratory tests in nonunion	41
	 Classification of Nonunion 	42
	Treatment of fracture Nonunion	49
	 Autologous bone graft 	51
	 Demineralized bone matrix 	54
	1. Introduction	54
	2. Historical perspectives on DBM	54
	3. DBM clinical applications	61
	4. DBM processing	65
	5. DBM sterilization	68
3	Patients and Methods	70
4	Results	80

5	Cases presentation	85
6	Discussion	110
7	Summary	116
9	References	118
10	Arabic Summary	128

LIST OF FIGURES

Number	Description	page
1.	Schematic diagram of Microscopic Anatomy of Bone	9
2.	Schematic diagram of Cellular origins of bone and cartilage cells	10
3.	Schematic diagram of Main steps of fracture healing	12
4.	Direct fracture healing	15
5.	Cortical bone remodeling via cutting cones	17
6.	Humerus fracture healed by direct fracture healing	18
7.	Secondary (indirect) diaphyseal bone healing	20
8.	Schematic representation of inflammation and repair during fracture healing	21
9.	Schematic diagram for Bone remodeling	27
10.	X ray of Nonunited distal tibia fracture	34
11.	CT in Nonunited Proximal humerus fracture	36
12.	Ultrasonography in fracture healing	37
13.	Fluoroscopy in Supracondylar Humerus Nonunion	38
14.	Technetium bone scanning in Nonunited fractures	40
15.	Hypertrophic non-union.	43
16.	Atrophic non-union.	43
17.	Failure of the internal fixation. Femoral hypertrophic non-union. (a) Reamed locked intramedullary nailing without grafting. (b) Solid union 1-year post-op.	45

18.	A, Lateral radiograph of a viable hypertrophic	46
	nonunion of the distal femoral diaphysis.	
	B, Lateral radiograph of a viable oligotrophic	
	nonunion of the femoral diaphysis	
19.	AP (A) and lateral (B) radiographs of an atrophic	47
	nonunion of the humerus in a 22-year-old man	
20.	AP (A), lateral (B), and internal rotation oblique	48
	(C) radiographs demonstrating hypertrophic	
	nonunion in a distal tibial shaft fracture in a 52-	
	year-old woman	
21.	The proposed role of demineralized bone matrix in	57
	bone formation.	
22.	The intraoperative appearance of the original	58
	DBM allograft mixture implanted 5 years earlier to	
	treat the nonunion of an open Grade IIIB tibial	
	pilon fracture.	
23.	(A and B) DBM forms	66,67
24.	Itra-operative photo of the DBM in Putty form	77
0.		

LIST OF TABLES

Number	Description	page
1.	Biologic and mechanical factors influencing fracture healing	12
2.	Radiographic Union Scale for Tibial Fractures (RUST)	33
3.	Types and Characteristics of Nonunion	44
4.	Types of autologous bone graft	51
5.	Examples for commercially available Demineralized Human Bone Matrix Preparations Cleared for Marketing	59,60
6.	ASA classification of physical status	72
7.	Non-Union Score System	73
8.	Master Table of the study	75
9.	Healing score system	78
10.	Pre-operative Data	82
11.	Post-operative Data	82
12.	Results of different studies performed on DBM in fracture Non-union	115

LIST OF ABBREVIATIONS

Abbreviation	Meaning
AP	Antero-Posterior view
BMPs	Bone Morphogenetic Proteins
СТ	Computed Tomography
DBM	Demineralized Bone Matrix
DFDBA	Demineralized Freeze-Dried Bone Allograft
ЕТО	Ethylene Oxide
HIV	Human Immunodeficiency Virus
IL	Interleukin
MRI	Magnetic Resonance Imaging
MSC	Mesenchymal Stem Cells
OI	OsteoInduction
RANKL	Receptor Activator of Nuclear factor Kappa B Ligand
RUST	Radiographic Union Scale for Tibial Fractures
SARS	Severe Acute Respiratory Syndrome
TENS	Titanium Elastic Nail System
TNF-α	Tumor Necrosis Factor-alpha
TNFR	Tumour Necrosis Factor Receptor
USG	Ultrasonography
VEGF	Vascular Endothelial Growth Factor
WNV	West Nile Virus

Stoduction of the state of the

Introduction

Fracture healing is a complex and dynamic process that is not fully understood. General treatment principles involve stabilizing the fracture and restoring the mechanical alignment while preserving and promoting the biological healing response. Even with optimal treatment, some fractures will not successfully heal. There are many different treatment options for nonunions; these vary in respect to cost, risk, and benefit. (1)

The definition of nonunion typically hinges on three important variables: the duration of time since the injury, characteristics of the fracture noted on serial radiographs, and clinical parameters that the treating surgeon can identify with a careful history and thorough physical examination. Currently, the US Food and Drug Administration (FDA) defines nonunion as a fractured bone that has not completely healed within 9 months of injury and that has not shown progression toward healing over 3 consecutive months on serial radiographs. (2)

According to literature, nonunion will occur in approximately 10% of fractures after conservative or operative treatment. The use of iliac crest autologous bone graft (ICABG) is widely considered as gold standard for a number of reasons, including osteogenic, osteoconductive, and osteoinductive properties and the lack of disease transmission or of immunogenicity.

However, the use of autograft may be at risk of major drawbacks, such as limited availability and variable quality of the graft, hematoma, infection, increased operative time and bleeding, chronic donor site pain, and additional cost.

Subsequently, research has focused on the development of novel bone graft substitutes for the last decades.

------Introduction

Demineralized bone matrix (DBM), first described by Urist et al. In 1965, who described an osteoinductive substance while preparing soluble extracts from Demineralized bone. It is obtained after mineral content extraction of bone through acid treatment. However, a wide range of types and modes of preparation of bone and carriers associated to the DBM for delivery are commercially available. (3)

The treatment of posttraumatic skeletal conditions such as delayed union, nonunion, malunion, and other problems of bone loss are challenging. In most cases, restoration of alignment and stable fixation of the bone is all that is necessary to achieve a successful reconstruction. However, in many cases, adjunctive measures such as bone-grafting or bone transport is required to stimulate bone-healing and fill bone defects.⁽⁴⁾

Evilen of Literary