

Evaluation of a New Biosilicate Sealer

(An In Vitro Study)

Thesis

Submitted to the Endodontic Department,
Faculty of Dentistry, Ain Shams University
for the Partial Fulfilment of the Requirements of the PhD Degree in
Endodontics

By

Maii Youssef Ismail El-Messellawy

B.D.S, Ain Shams University (2006), M.Sc., Ain Shams University (2013) Assistant lecturer of Endodontics, Faculty of Dentistry, Beni-Seuf University

> Faculty of Dentistry Ain Shams University 2018

SUPERVISORS

Prof. Dr. Salma Hassan El-Ashry

Professor of Endodontics
Endodontic Department
Faculty of Dentistry
Ain Shams University

Prof. Dr. Abeer El-Gendy

Professor of Endodontics
Endodontic Department
Faculty of Dentistry
Ain Shams University

Acknowledgement

All the credit and respect goes to **Prof. Dr. Salma Hassan El-Ashry**, Professor of Endodontics, Faculty of Dentistry, Ain Shams University, who has always been generous with her knowledge and time. I am forever grateful for her guidance, unwavering support and mentorship over the years.

Exceptional appreciation and admiration goes to **Prof. Dr. Abeer El-Gendy**, Professor of Endodontics, Faculty of Dentistry, Ain Shams University, for the devoted support and diligent supervision throughout this work, for her patience, motivation and immense knowledge.

"My esteemed professors;

I take pride being your student"

Dedication

To **DAD & MOM** who paved the path before me, upon whose shoulders I stand today; your constant encouragement and faith in me is what kept me going. Thank you for being my role models.

To **AHMED**, who always inspires, supports and protects. The significance you give me every day i go out the door is unparalleled, thank you for believing in me.

To **LAMIAA**, you will always be the sister of my soul, the friend of my heart.

To my wonderful **OMAR**, my darling, my blessing, you make my life grand; thanks for keeping up with how busy i was during this work.

To my Friends, thanks guys for always being there; Mais, Noha, Susan & Menna; & to the loving memory of Heba, you are missed.

TABLE OF CONTENTS

List of Figures	II
List of Tables	VII
List of Equations	IX
Introduction	1
Review of literature	3
Physical properties of biosilicate sealers	3
Bioactivity of biosilicate sealers	14
Bond strength of biosilicate sealers	18
Sealing ability of biosilicate sealers	21
Cytotoxicity of biosilicate cements	27
Aim of the study	31
Materials and Methods	32
Results	63
Discussion	104
Summary and Conclusion	118
References	121
Arabic Summary	-

LIST OF FIGURES

Fig.	Title	Page
no.	Tiue	no.
1	Sample classification	33
2	Split-mold rings of different dimensions as specified by the ISO 6876:2001	
3	pH meter	35
4	Sealed cylindrical polypropylene tubes with sealer samples stored within	
5	A disc of each sealer type under investigation placed on a digital sensor next to the stepwedge	
6	Digital images being analyzed on Image J software	38
7	Gilmore device installed with initial and final Gilmore needles used as specified by the ASTM No.C266-03 for measuring the initial and final setting times of root canal sealers	•
8	(a) Split-mold rings of 20mm inner diameter x 1.5mm height, (b) Solubility sample prepared with the nylon thread inserted to facilitate its handling & suspension during the test	
9	Digital Scale	43
10	Schematic drawing of protocol used for bioactivity Potential	
11	Gold Sputter	47
12	Scanning electron microscope.	47
13	Schematic representation of the experimental model	50
14	Schematic representation of the push-out bond strength test	
15	Sealing ability (Linear dye penetration) sample	55
16	Polypropylene molds of 2mm height x 5mm diameter	60
17	Millex-GS sterile filter	61

Fig.	Title	Page
no.	Title	no.
18	Cells diluted in fresh medium & seeded into 96-well plates	. 61
19	Absorbance recorded on a multiplate reader at 570nm	. 61
20	Line chart representing the mean pH value for the overall comparison of BioRoot RCS and MTA Fillapex sealers against different time intervals (hours)	. 66
21	Line chart representing the effect of time (hours) on the mean ph value for MTA Fillapex root canal sealer	. 66
22	Line chart representing the effect of time (hours) on the mean pH value of BioRoot RCS root canal sealer	. 67
23	Column chart representing mean radiopacity values (mmAl) of BioRoot RCS and MTA Fillapex sealers	. 69
24	Column chart representing mean initial and final setting time values (hours) for BioRoot RCS and MTA Fillapex sealers plotted against time	71
25	Bar chart representing mean percentage weight loss (%) values of BioRoot RCS and MTA Fillapex sealers	. 73
26	Column chart representing mean interfacial layer thickness (µm) values of BioRoot RCS and MTA Fillapex sealers	. 75
27	SEM micrograph of BioRoot RCS sealer filled sample after one week immersion in PBS showing surface precipitates, spherulites & the formation of an interfacial layer (x90)	76
28	SEM micrograph of BioRoot RCS sealer filled sample after one week immersion in PBS showing surface precipitates (x98)	. 76
29	SEM micrograph of BioRoot RCS sealer filled sample after one week immersion in PBS showing layer of precipitates at the sealer-dentin interface "interfacial layer" (x800)	. <i>77</i>
30	SEM micrograph of BioRoot RCS sealer filled sample after one week immersion in PBS showing a layer of aggregated apatite spherulites (x1600)	

Fig.	TO LA	Page
no.	Title	no.
31	SEM micrograph of BioRoot RCS sealer filled sample after immersion for 1 week in PBS. At higher magnification (x3000); showing clusters of aggregated apatite spherulites	. 78
32	SEM micrograph of BioRoot RCS sealer filled sample after one week immersion in PBS. At higher magnification (x5000); clusters of aggregated apatite spherulites were well visible	. 78
33	SEM micrograph of MTA Fillapex sealer filled sample after one week immersion in PBS showing surface precipitates (x90)	. 79
34	SEM micrograph on MTA Fillapex sealer filled sample after one week immersion in PBS showing interfacial precipitates (x500)	. 79
35	SEM micrograph on MTA Fillapex sealer filled sample after one week immersion in PBS showing surface & layer of precipitates (x800)	. 80
36	SEM micrograph on MTA Fillapex sealer filled sample after one week immersion in PBS showing surface & interfacial precipitates (x900)	. 80
37	SEM micrograph of MTA Fillapex sealer filled sample after one week immersion in PBS showing surface & interfacial precipitates (x1600)	. 81
38	SEM micrograph of MTA Fillapex sealer filled sample after one week immersion in PBS. Clusters of aggregates of apatite spherulites were visible & the morphology of apatite spherulites was well visible (x3000)	. 81
39	SEM micrograph of MTA Fillapex sealer filled sample after one week immersion in PBS. At higher magnification (x5000); the morphology of apatite spherulites was well visible	. 82
40	Column chart representing the mean value of Ca/P ratio for BioRoot RCS and MTA Fillapex sealers	

Fig.	Title	Page
no.	Title	no.
41	Interfacial elemental composition of BioRoot RCS sealer filled sample after one week immersion in PBS note the high calcium and phosphate levels	85
42	Surface elemental composition of BioRoot RCS sealer filled sample after one week immersion in PBS note the high calcium levels	85
43	Surface elemental composition of MTA Fillapex sealer filled sample after one week immersion in PBS note the high silicate peaks	86
44	Interfacial elemental composition of MTA Fillapex sealer filled sample after one week immersion in PBS note the high silicate levels	86
45	Column chart showing push-out strength values (Mpa) in the coronal, middle and apical parts of the root for BioRoot RCS and MTA Fillapex sealers	89
46	Column chart showing push-out bond strength values (Mpa) of each sealer at different thirds within the root canal	. 90
47	Column chart showing mean linear dye penetration values of BioRoot RCS and MTA Fillapex sealers	92
48	Linear dye penetration pattern in BioRoot RCS filled sample	93
49	Linear dye penetration pattern in MTA Fillapex filled sample	93
50	Column chart showing percentage of viable cells at different concentrations for BioRoot RCS and MTA Fillapex at 24 hours time period	96
51	Line graph representing the percentage cell viability of BioRoot RCS sealer samples using MTT assay after 24h time period	97
52	Line graph representing the percentage of viable cells with MTA Fillapex sealer samples using the MTT assay after 24h time period	97

Fig.	Title	Page
no.	Title	no.
53	Column chart representing the percentage of viable cells at different concentrations for BioRoot RCS and MTA Fillapex at 72 hours time period	
54	Line graph displaying the percentage of cell viability with BioRoot RCS sealer samples using the MTT assay after 72h time period	
55	Line graph displaying the percentage cell viability with MTA Fillapex sealer samples using the MTT assay after 72h time period	
56	Column chart representing the percentage of viable cells at different time periods for Bioroot RCS group	
57	Column chart representing the percentage of viable cells at different time periods in MTA Fillapex group	

LIST OF TABLES

Table no.	Title	Page no.
1	Chemical composition & charachteristics of tested root canal sealers	32
2	Cytotoxicity score based on cell viability relative to control	60
3	The pH value at different time periods and significance of difference between BioRoot RCS and MTA Fillapex sealers	64
4	The mean and standard deviation (SD) values for comparison of pH value at different times within the same group and significance of the difference between groups	65
5	The mean, standard deviation (SD) values for comparison of radiopacity (mm AL) and significance of the difference between BioRoot RCS and MTA Fillapex sealer groups	68
6	Values of initial and final Setting time (hours) and significance of the difference between BioRoot RCS and MTA Fillapex	70
7	The mean and standard deviation values for comparison of solubility (% weight loss) and significance of the difference between BioRoot RCS and MTA Fillapex	72
8	The mean, standard deviation values for comparison of SEM of Interfacial layer thickness (µm) and significance of the difference between BioRoot RCS and MTA Fillapex groups	74
9	The mean and standard deviation values for comparison of EDX (Ca/P ratio) and significance of the difference between BioRoot RCS and MTA Fillapex sealer groups	83
10	The mean and standard deviation values for comparison of Push out strength (Mpa) and significance of the difference between BioRoot RCS and MTA Fillapex sealers	88

Table no.	Title	Page no.
11	The mean and standard deviation values of push out strength (Mpa) and significance of the difference within the same sealer group	90
12	The mean, standard deviation values of linear dye penetration and significance of the difference between BioRoot RCS and MTA Fillapex	91
13	The mean percentage, standard deviation (SD) values for comparison of cell viability with different concentrations at 24 hours between BioRoot RCS and MTA Fillapex sealer groups	96
14	The mean percentage, standard deviation (SD) values for comparison of cell viability with different concentrations at 72 hours between BioRoot RCS and	89
15	The mean percentage, Standard deviation (SD) values for comparison of cell viability of BioRoot RCS at 24 and 72 hours within each concentration and comparison of all concentrations within the same time	102
16	The mean percentage, standard deviation (SD) values for comparison of cell viability of MTA Fillapex at 24 and 72 hours within each concentration and comparison of all concentrations within the same time	103

LIST OF EQUATIONS

Eq.	Title	Page no.
1	Calculation of radiopacity (mmAl) of the tested samples	37
2	Calculation of solubility (% weight loss compared to the original weight)	
3	Calculation of Bond strength	52
4	Calculation for the percentage of viable cells	59

INTRODUCTION

Root canal sealers are fundamentally utilized to attain impervious 3 dimensional hermetic seal between the core filling material and root canal walls. They can be grouped according to their basic components, such as zinc oxide eugenol, calcium hydroxide, resin-based, glass ionomer, iodoform, silicon, and most recently tricalcium silicate based sealers such as BioRoot TM RCS.

According to Grossman, An ideal root canal sealer must attain the following properties: adequate radiopacity, possess reasonable working & setting time, insoluble in tissue fluids, provide excellent seal with minimal leakage, dimensionally stable, provide satisfactory adhesion with radicular dentin walls, biocompatible; and bacterio-static.

In 1993, a new class of dental materials have been introduced "Tricalcium silicate cements"; which have drawn eminent recognition with their favourable biologic behavior which is guaranteed with their alkaline pH, bioactivity, biologic seal and biocompatibility. In more recent years, tricalcium silicate root canal sealers have been introduced.

Among the first MTA-containing root canal sealers introduced was MTA Fillapex, which is available in paste-catalyst form. It was introduced with the aim of integrating the physico-chemical properties of a resin-based root canal sealer with the benefit of MTA's bioactivity; since it has been available for 7 years, it is the most studied MTA-containing root canal sealer.

BioRoot RCS is a pure bioactive tricalcium silicate sealer that was launched in 2015; it's available in powder-liquid form; and is made of pure

tricalcium silicate, zirconium oxide and excipients. It is claimed by the manyfacturer to be a bioactive breakthrough with outstanding sealing ability and physico-chemical properties.

Bioactive silicate sealers offer an alkaline pH, bioactivity through hydroxyapatite formation at the tooth-sealer interface and mineralization of dentinal structure, biocompatibility through high mineral purity and monomer free formulation reducing the risk of adverse tissue reaction, & finally it's sealing properties; where crystallization of the material takes place inside the dentin tubules creating a tight seal.

Physical tests are performed to analyze the properties of endodontic sealers, anticipating the clinical performance. American National Standards Institute/American Dental Association's (ANSI/ADA) requirements for sealers include radiopacity of at least 3 mm Al, solubility less than 3%, and a setting time that does not exceed 10% of the time specified by manufacturer's statement. Besides these requirements, root canal sealers should provide an adherence between gutta-percha and root canal walls, avoiding the occurrence of gaps at the sealer/dentin interface.