

بسم الله الرحمن الرحيم

-Call 6000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

DEVELOPMENT AND EVALUATION OF FEEDING DEVICE IN COTTON PLANTERS

BY

MUHAMMAD NOUR AL-DEAN SAFWAT AL-TENBI

B. Sc. Agricultural Sciences (General), Aleppo University, 1988
Diploma Agricultural Sciences (Fruit Trees), Aleppo University, 1989
M. Sc. Agricultural Sciences (Agricultural Engineering),
Cairo University, 1999

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
IN
AGRICULTURAL ENGINEERING

Agricultural Engineering Department
Faculty of Agriculture
Cairo University
2002

B 1144 0

Cairo University Faculty of Agriculture Agricultural Engineering Department

DEVELOPMENT AND EVALUATION OF FEEDING DEVICE IN COTTON PLANTERS

BY

MUHAMMAD NOUR AL-DEAN SAFWAT AL-TENRI

B. Sc. Agricultural Sciences (General), Aleppo University, 1988
Diploma Agricultural Sciences (Fruit Trees), Aleppo University, 1989
M. Sc. Agricultural Sciences (Agricultural Engineering),
Cairo University, 1999

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY IN AGRICULTURAL ENGINEERING

Supervised by

Prof. Dr.

Samy Mohamed Younis

Prof. of Agricultural Engineering (Supervisor)
Agric. Eng. Dept.
Fac. of Agric., Cairo University

Prof. Dr.

Gamal El-Deen Mohamed Nasr

Prof. of Agricultural Engineering
Agric. Eng. Dept.
Fac. of Agric., Cairo University

To

My Father's breath,

My Mother,

My Brothers, My Sister,

My Wife,

My Son "Hady",

My Daughter "Hadeel"

And My Country "Syria"

ACKNOWLEDGEMENT

The author wishes to thank "Allah" for allowing him to complete this work.

Prof. Dr. Samy Mohamed Younis, Professor of Agricultural Engineering, Agricultural Engineering Department, Faculty of Agriculture, Cairo University, and Prof. Dr. Gamal El-Deen Mohamed Nasr, Professor of Agricultural Engineering in the same Department, for their sincere supervision, encouragement, guidance and constructive criticism through this work was undertaken.

Special thanks are extended to *Prof. Dr. Abd El-Kader A. El-Nakib*, Professor of Agricultural Engineering, Agricultural Engineering Department, Faculty of Agriculture, Al-Azhar University, *Prof. Dr. Azmy Mahmoud El-Bery*, Professor, and Chairman of Agricultural Engineering Department, Faculty of Agriculture, Cairo University and Director of Agricultural Engineering Research Institute, Ministry of Agriculture, Cairo, Egypt., *Dr. Gamal Hassan*, *Dr. Samy Badr*, and *Dr. Ibrahim Yehia El-Sayed* in Agricultural Engineering Research Institute, Ministry of Agriculture, Cairo, Egypt.

Special thanks are extended to staff members of Agricultural Engineering Department, Faculty of Agriculture, Cairo University, and the technical of the workshops in the same Department for their continuous assistance.

Name of Candidate Muhammad Nour Al-Dean Safwat Al-Tenbi Degree Ph. D.
Title of Thesis Development and Evaluation of Feeding Device in Cotton Planters.

Prof. Dr. Samy Mahamed Youngs

Supervisors Prof. Dr. Samy Mohamed Younis.

Prof. Dr. Gamal El-Deen Mohamed Nasr.

Department Agricultural Engineering.

Branch Agricultural Mechanization. Approval

ABSTRACT

The aim of this study was the development of feeding device in cotton planters to accept fuzzy linted Egyptian cotton seeds (*Gossypium barbadense*). The main results in this study can be summarized in the following points:

Discharge of cotton seeds decreased as the feeding device speed increased with all cell diameters, without agitator or by using agitator from any type, this is due to the insufficient time available for seeds filling.

The same behavior and trend obtained in the discharge of cotton seeds occurred with percentage of cells filling, taking into consideration differences of sizes, weights and three dimensions of the studied cotton seeds varieties.

The percentage of seed damage were found to increase by increasing feeding device speed for all cell diameters and with all types of agitator, when percentage of cells filling was less than 100 % and by decreasing feeding device speed for all cell diameters and with all types of agitator, when percentage of cells filling was more than 100 %.

There are opposite concrete correlation between germination percentage of cotton seeds and percentage of seed damage. The factors which cause and increase percentage of seed damage are the same factors which affect germination percentage of cotton seeds.

Coefficient of variation (C.V.) of longitudinal seed distribution increased as the feeding device speed increased with all cell diameters, without agitator or by using agitator from any type. In other wards the best uniformity of longitudinal seed distribution was realized at low feeding device speeds.

It is recommended to use the feeding device of 10.0 mm cell diameter (25 \times 2 cells) and 6.0 mm depth with speed of 15 r.p.m. and with crank two wings agitator for planting of linted and delinted Egyptian cotton seeds.

The research realized its set up objectives as the following outcomes my be valuable contribution towards successful cotton planting operation:

- 1- Set of suggested equations can be used to predict with reasonable accuracy physical properties of Egyptian cotton seeds varieties from measurement of any of three dimensions (Length, width and thickness). These properties help in designing of planting machines for Egyptian cotton crop.
- 2- Development of test rig for appropriate testing of cotton planter (Picker wheel feeding device).
- 3- Development of picker wheel feeding device (cell dimensions: cell diameter and cell depth) for appropriate fuzzy linted Egyptian cotton seeds planting.
- 4- Addition of agitator to cotton planter (Four types: fan, spikes, one wing crank and two wings crank) to improvement of discharge of fuzzy linted Egyptian cotton seeds from the hopper of planter.

LIST OF CONTENTS

<u>Title</u>	<u>Page</u>
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2. 1. Preface and History	5
2. 2. Methods of Sowing and Planting	7
2. 2. 1. Importance of mechanical planting of cotton	9
2. 3. Functions of Planters	9
2. 4. Types of Planters	10
2. 5. Row-crop and Cotton Planters	10
2. 5. 1. Size of row-crop planters	11
2. 5. 2. Planter components	12
2. 5. 3. Cotton planters	14
2. 6. Design of Planter Components	17
2. 6. 1. Seed hopper	17
2. 6. 2. Seed metering systems	18
2. 6. 2. 1. Types of seed metering systems	18
2. 6. 2. 2. Mechanism of seed metering systems	24
2. 6. 2. 3. Performance of metering systems	27
2. 6. 2. 3. 1. Seed metering	27
2. 6. 2. 3. 2. Feeding rates	28
2. 6. 2. 3. 2. A. Effect of planter and feeding device speed	29
2. 6. 2. 3. 2. B. Seed scattering	33
2. 6. 2. 3. 2. C. Effect of agitation	35
2. 6. 2. 3. 2. D. Effect of cells and gate opening	35

2. 6. 2. 3. 2. E. Effect of seed size and shape	36
2. 7. Properties of Cotton Seeds	40
2. 7. 1. Processing of seeds	40
2. 7. 2. Seed damage	45
2. 7. 3. Seed distribution	46
2. 7. 4. Germination	47
2. 7. 5. Seed spacing in the row	50
2. 8. Physical and Mechanical Properties of Seeds	52
2. 8. 1. Importance of properties study of agricultural materials.	52
2. 8. 2. Physical properties of seeds	53
2. 8. 3. Mechanical properties	55
3. MATERIALS AND METHODS	59
3. 1. Materials	59
3. 1. 1. The designed test-rig	59
3. 1. 2. Cotton planter	65
3. 1. 3. Measuring instruments	80
3. 1. 4. Physical and mechanical properties of cotton seeds	82
3. 1. 4. 1. Physical properties of cotton seeds	82
3. 1. 4. 2. Mechanical properties of cotton seeds	85
3. 1. 5. Seed varieties	86
3. 1. 6. Delinting of cotton seed	89
3. 2. Methods	89
3. 2. 1. Seed discharge	90
3. 2. 1. 1. Feeding device speed	90
3. 2. 1. 2. Cell dimensions	90
3. 2. 1. 3. Agitation device	91

	3. 2. 2. Percentage of cells filling	91
	3. 2. 3. Seed damage and germination	92
	3. 2. 4. Longitudinal seeds distribution	93
	4. RESULTS AND DISCUSSION	94
	4. 1. Physical and Mechanical Properties of Cotton Seeds	94
	4. 1. 1. Physical properties of cotton seeds	94
	4. 1. 1. 1. Correlation between length, width and thickness of	
	the seeds	94
	4. 1. 1. 2. Frequency distribution	96
	4. 1. 1. 3. Effect of shape on size	106
,	4. 1. 1. 4. Effect of variety	107
	4. 1. 1. 5. Diameter, area, and percent of sphericity as a	
	function of length, width and thickness of the seeds	110
	4. 1. 2. Real density, bulk density, porosity of cotton seeds	113
	4. 1. 3. Mechanical properties of cotton seeds	114
	4. 1. 3. 1. Angle of repose, angle of external friction and	
	coefficient of friction of cotton seeds	114
	4. 2. Factors Affecting the Design and Performance of Feeding	
	Device in Cotton Planters (Cell diameter and feeding	
	device speed)	115
	4. 2. 1. Discharge of cotton seeds	115
	4. 2. 2. Percentage of cells filling	131
	4. 2. 3. Percentage of seed damage	147
	4. 2. 4. Germination percentage of cotton seeds	164
	4. 2. 5. Longitudinal seed distribution	181
	4. 2. 5. 1. At forward speed 2 km/h	182

4. 2. 5. 2. At forward speed 3 km/h	214
4. 2. 5. 3. At forward speed 4 km/h	218
4. 2. 5. 4. At forward speed 5 km/h	222
4. 3. Selection of The Optimum Design of Cotton Seeds	
Planting System	228
4. 3. 1. Giza 80 variety	230
4. 3. 2. Giza 83 variety	231
4. 3. 3. Giza 85 variety	233
4. 3. 4. Giza 89 variety	234
4. 3. 5. Egyptian cotton seeds varieties	236
5. SUMMARY AND CONCLUSION	238
6. LITERATURE CITED	244
7. APPENDIX	253
O ADADIC CITAMADV	1 - 6

LIST OF TABLES

<u>Table</u>	<u>Page</u>
3-1- Seed rate, row spacing, and distance between Egyptia	n
cotton seeds of tested varieties	. 88
4-1- Arithmetic mean values of the measured and calculate	d
physical and mechanical properties of cotton seeds	95
4-2- Minimum and maximum values of samples of 100 seed	ls
for length (L) , width (W) and thickness (T) for the si	x
common varieties of cotton seeds in Egypt	. 96
4-3- The deduced equations to express the relationshi	p
between L, W, T, and d_g , d_a , A_c , A_f , A_t for the different	nt
varieties of cotton seeds	
4-4- Correlation for length/width, length/thickness, and	ıd
thickness/width ratios	97
4-5- Standard deviation (S.D.) for some characteristics of the	ne
seed	99
4-6- Coefficient of variability (C.V.) for some characteristic	cs ·
of the seed	99
4-7- Mean ± Standard error (S.E.) for some characteristics	of
the seed	100
4-8- The analysis of variance for the parameter	rs
L, W , and T	108
4-9- The difference between means of the difference	nt
investigated varieties of cotton seeds	109