Prevention and Management of Iron Deficiency Anemia among Students in Kasr Al Ainy

Secondary School of Nursing

(Family Medicine Based Approach)

Thesis

Submitted for Partial Fulfillment of Master Degree in Family Medicine

<u>By</u>

Ola Aly Abdel Maksod Azab El Safory M.B.B.CH.

Supervisors

Dr. Maissa Mohamed Shawky

Professor of Public Health
Faculty of Medicine
Cairo University

Dr. Maha Mohamed Ghobashi

Professor of Public Health
Faculty of Medicine
Cairo University

Faculty of Medicine

Cairo University

Family Medicine Department

2011-2012

و قل إعملوا فسيرى الله عملكم و رسوله والمؤمنون

(التوبة : 105)

Acknowledgment

"Praise be to God", the master of the world, most gracious, most merciful". I would like to thank those whose contributions made this work possible.

It is my pleasure to express my deepest regards and gratitude to Professor **Dr. Maissa**Mohamed Shawky Professor of Public Health,

Faculty of Medicine, Cairo University for her much appreciated guidance and constructed support.

I am very thankful to Professor **Dr. Maha Mohamed Ghobashi** Professor of Public Health,
Faculty of Medicine, Cairo University for her
guidance, support and her extra ordinary amount of
help.

I am grateful to my parents and my small family for their moral support, encouragement and for their pray for me.

I am much obliged to the students who gave their time and attention to answer my questions.

Finally my particular appreciation to all my dear colleagues and staff members of Family Medicine Department , Faculty of Medicine, Cairo University, for their constructive encouragement.

Objectives: To promote the nutritional health status among adolescent Nursing School girls in Faculty of Medicine, Cairo University and clarify the role of family physician in providing a comprehensive care for iron deficient adolescent girls from a family practice point of view.

Methods: The study was cross sectional interventional study, carried out at Kast Al Ainy Secondary School of Nursing during the academic year 2010/2011.

Results: The mean age of adolescent nursing school girls was 16.3 ± 0.5 years, the mean body mass index was 20.2 ± 1.7 kg/m². The results of HB assessment show that more than two fifths of studied sample (47.0%) were anemic. After health education sessions, there was a significant improvement in knowledge concerning causes, symptoms, prevention of IDA, sources, absorption of iron and about proper timing for intake of daily dose of iron supplements from 5.3 ± 1.5 to reach 9.3 ± 0.9 .

Conclusion: The study concluded that more than three fifths of adolescent Nursing School girls change their style of eating after health education and nutritional care is the first line for prevention of IDA.

Key words: (Iron, Hemoglobin, Iron deficiency, Iron deficiency anemia, Adolescents, Nutritional education, Nutritional care, Iron supplementation, Iron fortification, Knowledge)

Acknowledgement Abstract and key words List of Abbreviations List of Tables List of Figures List of Appendices Introduction 1 Aim of the work 4 **Review of literature Epidemiology of Iron Deficiency Anemia (IDA)** 5 Definition **Degrees and Stages** 6 Adolescence and IDA 7 Food Guide Pyramid 11 Nutritional requirements of adolescent females 12 Iron Cycle 19 Pathophysiology 20 22 Etiology Prevalence 24 Factors affecting prevalence 28 Diagnosis Clinical 36 Laboratory 38 Differential diagnosis 40 II) **Prevention and Management of IDA Primary Prevention** 43 Egypt Adolescent Anemia Prevention Program 46 **Secondary Prevention** 50 **Treatment 52 Prognosis** 56

Control

57

Subjects and Methods	63
Results	68
Discussion	95
Conclusion and Recommendations	104
Summary	107
References	110
Appendices	
Arabic Summary	

List of Abbreviations

AAP American Academy of Pediatric

Al Adequate Intake

AMDR Adequate Macronutrient Distribution Ranges

AMDR Adequate Macronutrient Distribution Ranges

BMI Body Mass Index

CDC Center of Disease Control and Prevention

DRI Daily Reference Intake

EAAPP Egypt Adolescent Anemia Prevention Program

EDHS Egypt's Demographic Health Survey

EER Estimated Energy Requirement

EHDR Egyptian Human Development Report

ERF Economic Research Forum

FAO Food and Agriculture Organization

FEP Free Erythrocyte Protoporphyrin

FFQ Food Frequency Questionnaire

GAIN Global Alliance for Improved Nutrition

Hb Hemoglobin

Hct Hematocrite

HIO Health Insurance Organization

ID Iron Deficiency

IDA Iron Deficiency Anemia

IFA Iron Folic Acid supplementation

MCV Mean Corpuscular Volume

MOHP Ministry of Health and Population

NAAC National Anemia Action Council

NCHS National Center for Health Statistics

NNI National Nutrition Institute

NRC National Research Center

RBC Red Blood Cells

RDA Recommended Dietary Allowance

SHIP Student Health Insurance Program

TIBC Total Iron Binding Capacity

UNICEF United Nations International Children Emergency Fund

USAID United States Agency for International Development

WFP World Food Program

WHO World Health Organization

list of Tables

	Page
Table 1: Dietary reference intakes of macronutrients for girls 9-20 years	13
Table 2: Dietary reference intakes for select micronutrients and water for girls 9- 20 years	15
Table 3: Dietary reference intakes for vitamins for girls 9-20 years	16
Table 4: Population coverage (%) by anemia prevalence surveys conducted between 1993 and 2005	26
Table 5: Laboratory parameters of IDA in adolescent females	39
Table 6: Causes of Anemia in Adolescents	40
Table 7: Mean age, mean number of siblings and mean value for BMI of adolescent Nursing School girls	70
Table 8: Relation between self perception of body shape and BMI among studied adolescent Nursing School girls	70
Table 9: Anemic status of studied adolescent Nursing School girls	71
Table 10: Socio demographic features of adolescent Nursing School girls	72
Table 11: Relation between socio demographic features of the studied Nursing School girls and their anemic status	74
Table 12: Relation between manifestations of IDA of studied Nursing School girls and anemic status	76
Table 13: Relation between menstrual history of studied Nursing School girls and anemic status	77
Table 14: Relation between iron supplementation of studied Nursing School girls and anemic status	78
Table 15: Relation between intake of high biological value Proteins of studied Nursing School girls and anemic status	79
Table 16: Relation between intake of Carbohydrates of adolescent Nursing School girls and anemic status	81
Table 17: Relation between unhealthy dietary habits of Nursing School girls and anemic status	82
Table 18: Distribution of studied Nursing School girls according to dietary adequacy from calories and proteins	83

	Page
Table19: Distribution of studied Nursing School girls according to energy from protein, carbohydrates and fat	84
Table 20: Distribution of studied adolescent Nursing School girls according to dietary adequacy of some fat soluble and some water soluble vitamins	85
Table 21:Distribution of studied Nursing School girls according to dietary adequacy from macro-minerals (Calcium, Magnesium)	87
Table 22: Distribution of studied Nursing School girls according to dietary adequacy from micro-minerals (Iron, Selenium, Zinc) per age	88
Table 23a: Pre and post test assessment for knowledge related to IDA	90
Table 23b: Pre and post test assessment for knowledge related to dietary sources of iron, factors affecting Its' absorption	92
Table 23c: Pre and post test assessment for knowledge related to control of IDA, iron supplementation	93
Table 23d: Mean score for nutrition education for studied Nursing School girls in pre and post intervention phases	94

List of Figures

Figure 1: A comparison of normal and anemic red blood cells.	5
Figure 2: Continuum of decreased body iron.	7
Figure 3: The Food Guide Pyramid.	11
Figure 4: Iron requirements based on dietary reference intake.	18
Figure 5: Iron Cycle.	19
Figure 6: Health education material of EAAPP.	49
Figure 7: Poor nutrition throughout the life cycle.	58

List of Appendices

إستبيان لمعرفة معدل إنتشار أنيميا نقص الحديد بين الطالبات المراهقات

بمعهد التمريض بكلية طب قصر العينى

Appendix (II) 24 Hours Dietary Recall &

Food Frequency Questionnaire

Appendix (III) Pre Test Questionnaire

Appendix (IV) Post Test Questionnaire

الغذاء وقاية وعلاج أنيميا نقص الحديد

INTRODUCTION

Anemia is defined as a low hemoglobin (Hb) concentration in blood, or less often, as a low hematocrite (Hct) value (*Brittenham*, 2008). Nutritional anemias are caused when there is an inadequate body store of specific nutrient needed for Hb synthesis (*Siddiqui and Siddiqui*, 2008).

Iron deficiency (ID) is prevalent in infants, children and adolescents worldwide due to their high iron requirements during growth, low dietary iron intake and low-bioavailability diet (*Andersson and Hurrell*, 2010).

Iron deficiency anemia (IDA) is the most common micronutrient deficiency in the world (*Paulman*, 2012). And is the most common cause of anemia in adolescents and research reports a prevalence of up to 24%, with frank anemia noted in 10% (*Patel*, 2009).

Iron deficiency affecting approximately 30% of the world's population in 1992 (*World Health Organization WHO*, 1992). And more than 2 billion individuals suffer from anemia estimated about 40% of the world's populations (*Dreyfuss and Stoltzfus*, 1998).

About one fifth of the world's population (20%) suffering from iron deficiency anemia (WHO, 2000a) and (Chen et al, 2005).

WHO and Center of Disease Control and Prevention (CDC) 2006, estimated that anaemia affects 1.62 billion people which corresponds to 24.8% of the population (*Benoist et al*, 2006).

IDA is more prevalent in developing countries where reduced work capacity, less income earned, higher levels of poverty and food insecurity (*Klemm et al, 2011*). And more prevalent in Egypt, because of complex economic and social problems, malnutrition, and infections sometimes triggered by hookworm (*Mukhtar, 2011*).

A survey conducted in 1999, found that thirteen million people; 22% of the Egyptian population are currently adolescents, 47% of them were anemic. The preliminary results from *Egypt's Demographic and Health Survey (EDHS)* conducted in *2000* showed that 30% of adolescents were anemic (*El-Zanaty and Way, 2001*).

Anemia constitutes a major public health problem in **Egypt** and needs urgent intervention. A national iron supplementation program to prevent anemia among adolescents was recommended.

The WHO recommends weekly supplementation for adolescent girls and women of reproductive age. Weekly dose of iron and folic acid, aims to improve and maintain the iron status of females prior to conception. All adolescent girls and non pregnant women be supplemented with 60 mg iron once or twice weekly and 400 ug folic acid should be included with the iron supplementation for the prevention of birth defects in those who become pregnant (*Dreyfuss and Stoltzfus*, 1998), (WHO, 2009) and (UNICEF, 2010).

The National Program of iron supplementation started in **Egypt** by the year 2000. The program aimed at control iron deficiency anemia (IDA) among adolescents. Ministry of Health and Population (MOHP), Health Insurance Organization (HIO), Student Health Insurance Program

(SHIP) through the United States Agency for International Development (USAID) and The Manoff Group seeks to reduce current anemia rates and to prevent anemia in preparatory and secondary schools students in five governorates in Upper Egypt.

Approach was adopted for this program: supplementation, diet improvement through nutrition education and parasitic control. The supplements distributed at the schools contained 200 mg ferrous fumarate and 300mcg folic acid once a week as recommended. Rates were measured over 4 months at the end of the 2000 school year and 20% drop in anemia rates among school-attending adolescents occurred (*MOHP* and HIO, 2002).

In spite of these efforts, the *EDHS 2005*, showed elevated level of IDA prevalence among adolescents higher than reported in *EDHS 2000*. *EDHS 2005* shows that the prevalence of anemia in Egypt among adolescent females, was around one third of females age 11-19 were anemic (*El-Zanaty and Way, 2001 and 2005*) (prevalence of anemia among adolescent females not mentioned by EDHS 2008) (*El-Zanaty and Way, 2009*).

So more researches is required to promote prevention and management of IDA.