Role of Anti Vascular Endothelial Growth Factor (Anti-VEGF) in anterior segment disorders

Essay Submitted for partial fulfillment of Master Degree in Ophthalmology

> BY Kehab Shahat Abdel-Kazik Omran MBBCH

Supervised by

Prof. Dr. Ali Hassan Saad

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Tamer Mohamed El-Raggal

Assistant professor of Ophthalmology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University Cairo 2012

<u>ACKNOWLEDGEMENT</u>

Thanks are all to **Allah**, our Merciful and Compassionate Lord. He has always helped me and guided me.

My great thanks & deep appreciation to **Prof. Dr. Ali Hassan Saad,** Professor of Ophthalmology, Faculty of Medicine, Ain Shams University for suggesting and supervising this work.

My sincere appreciation and gratitude to **Dr.Tamer Mohamed El-Raggal**, Assistant professor of Ophthalmology, Faculty of Medicine, Ain Shams University for his close support, continuous observation, and guidance throughout this work.

Finally I am grateful to my family, friends $\mathcal L$ colleagues for their great support $\mathcal L$ encouragement.

CONTENTS

Title	Page
Abbreviations list	I
Figures list	IV
Introduction	1
Chapter (1) Angiogenesis	
Vasculogenesis and angiogenesis	6
Role of VEGF in hypoxia induced angiogenesis	8
Vascular endothelial growth factor	9
VEGF discovery	9
VEGF receptors	12
VEGF-R1	13
VEGF-R2	14
VEGF-R3	14
Angiogenic inhibitors	15
Chapter (2) Ocular diseases with angiogenesis	
Diabetic retinopathy (DR)	17
Diabetic macular edema (DME)	20
Choroidal neovascularization (CNV)	22
Pathogenesis of CNV in AMD	23
Retinal vein occlusion (RVO)	25
Neovascular glaucoma (NVG)	28
Alkali burn to the eye	31
Pterygium	34
Corneal neovascularization	36

Bleb vascularity after trabeculectomy	39
Chapter (3) Anti-VEGF Agents	
Pegaptanib (Macugen)	41
Bevacizumab (Avastin)	43
Ranibizumab (Lucentis)	47
Chapter (4) Anti-VEGF in anterior segment disorders:	
Pterygium	51
Subconjunctival anti-VEGF injection in pterygium	52
Topical anti-VEGF pterygium	54
Corneal neovascularization	55
Subconjunctival anti-VEGF in corneal	55
neovascularization	
Topical anti-VEGF in corneal neovascularization	57
Corneal neovascularization after keratoplasty	59
Subconjunctival anti-VEGF use in corneal	60
neovascularization after keratoplasty	
Topical anti-VEGF use in corneal	61
neovascularization after keratoplasty	
Bleb vascularity after trabeculectomy surgery	63
Subconjunctival anti-VEGF in bleb vascularity	63
Intravitreal anti-VEGF injection in bleb vascularity	65
Topical anti-VEGF in bleb vascularity	66
Neovascular glaucoma	67
Intravitreal anti-VEGF use in neovascular glaucom	ea 67
Intracameral injection of anti-VEGF in rubeosis irid	i 74
Alkali burn	78
Subconjunctival anti-VEGF injection after alkali	80
burn	

Topical anti-VEGF after alkali burn	81
Chapter (5) Complications and Safety of anti-VEGF use	
Topical and subconjunctival anti-VEGF:	84
Intravitreal anti-VEGF injection	86
Summary and conclusion	89
References	92
ملخص الرسالة	_

Abbreviations list

• AMD	 Age related macular degeneration
• BCVA	Best corrected visual acuity
• BFGF	Basic fibroblast growth factor
• BRB	Blood retinal barrier
• BRVO	Branch retinal vein occlusion
• °C	• Celsius
• CME	Cystoid macular edema
• CNV	Choroidal neovascularization
• CRVO	Central retinal vein occlution
• DME	Diabetic macular edema
• DR	Diabetic retinopathy
• ECs	Endothelial cells
• ECM	Extracellular matrix
• E.Coli	Escherichia coli
• EGF	Epidermal growth factor
• ELISA	Enzyme linked immune sorbent assay
• EPC	Endothelial progenitor cells
• °F	• Fahrenheit
• FDA	Food and Drug Administration
• 5-FU	• 5 –Flurouracil
• HCRVO	Hemi-central retinal vein occlusion
• HIF	Hypoxia induced factor
• IGF-1	• Insulin like growth factor-1

• IgG	Immunoglobulin G
• IgM	Immunoglobulin M
• IOP	Intra-ocular pressure
• IV	• Intravenous
• IVB	Intravitreal bevacizumab
• IVR	Intravitreal ranibizumab
• KDa	Kilodalton
• mg	Milligram
• MMC	Mitomycin C
• mmHg	Millimeter mercury
• MMPs	Matrix metalloproteinases
• NO	Nitric oxide
• NOS	Nitric oxide synthases
• NPDR	Non-proliferative diabetic retinopathy
• NV	Neovascularization
• NVA	Neovascularization of anterior chamber angle
• NVG	Neovascular glaucoma
• NVI	Neovascularization of iris
• OCT	Optical coherence tomography
• PDGF	Platelet derived growth factor
• PDR	Proliferative diabetic retinopathy
• PEDF	Pigment epithelium derived factor
• Pg/ml	Picogram per milliliter
• PH	Power of hydrogen

PKP	Penetrating keratoplasty
• PIGF	Placental growth factor
• PRP	Panretinal photocoagulation
• PT	Prothrombin time
• PTT	Partial thromboplastin time
• RhuFAbV2	Recombinant humanized monoclonal anti-VEGF
• RVO	Retinal vein occlusion
Serpin	Serine protinase inhibitor
• TGF-B	Transforming growth factor-B
• ug/ml	Microgram per milliliter
• UV	Ultraviolet radiation
• VA	Visual acuity
• VEGF	Vascular endothelial growth factor
• VEGF-R1	Vascular endothelial growth facfor receptor 1
• VEGF-R2	Vascular endothelial growth factor receptor 2
• VEGF-R3	• Vascular endothelial growth factor receptor 3
• VPF	Vascular permeability factor

Figures list

Fig.		Page
	Chapter (1) Vasculogenesis and angiogenesis	
1	Schematic of angiogenic pathway initiated by VEGF	7
2	Vascular endothelial growth factor receptors diagram	13
	Chapter (2) Ocular diseases with angiogenesis	
3	OCT shows diabetic macular edema (DME)	21
4	Clinically significant macular edema with hard exudates in the fovea. Cotton wool spots are present near the major retinal vessels	22
5	Fluorescein angiogram shows subfoveal leakage of dye corresponding to the choroidal neovascular membrane	24
6	Retinal photographs of wet macular degeneration	25
7	Central retinal vein occlusion	26
8	Hemi-central retinal vein occlusion.	26
9	Rubeosis iridis	30
10	Neovascularization of the cornea after alkali burn	33
11	Pterygium growing on the cornea	35
12	Superficial advancing towards the graft host junction.	37
13	Corneal neovascularization with contact lens wearing	38
14	Cystic bleb with bleb leak after trabeculectomy	40

	Chapter (4) Anti-VEGF use in anterior segment disorders	
15	Effect of subconjunctival ranibizumab in pterygium	54
16	Effect of topical bevacizumab on corneal neovascularization post-keratoplasty	62
17	Bleb photograph of patient at follow up visits after sub-conjunctival bevacizumab on days 1, 7, 15, 30, 90, 180.	64
18	Slit lamp photograph before intravitreal injection of Bevacizumab in NVG, many newly formed vessels (NFVs) are seen in the margin of the pupil	70
19	NVG photograph shows iris neovascularization before bevacizumab, 2weeks after intracameral bevacizumab injection neovascularization had been completely regressed	75
20	(Left) peripheral corneal neovascularization developed by day 7 and (Middle) progressed until fully established by day14 (Right) on day 14, bezacizumab was adminstered	81

INTRODUCTION

The eye contains highly vascularized and completely avascular tissues in close apposition. This specialized anatomy requires tight regulation of the balance between vascular quiescence and vascular growth. Growth normally occurs in ocular embryonic development, but is virtually absent from the eye in adult life (Ferrara et al., 1995).

Normal visual function requires transparency in certain avascular compartments of the eye, such as the cornea, lens and vitreous. However, transparency of the light pathway is compromised when blood vessels grow into these avascular compartments. Moreover, the pathological vessels often have abnormal structures such as pericyte density and basement membrane, which can lead to leaking vasculature and hemorrhage, affecting visual acuity (Zhang et al., 2007).

The exact mechanism for the pathogenesis of ocular neovascularization is not well understood yet. In the normal adult eye, homeostasis of angiogenesis regulation is essential for maintaining the structural and functional integrity of the ocular vascular system. A disturbed balance between pro-angiogenic and anti-angiogenic factors is believed to play an important role in pathological ocular neovascularization (Ma et al., 2005).

Extensive studies were conducted to investigate the roles of increased levels of pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), and decreased levels of anti-angiogenic factors, such as pigment epithelium-derived factor (PEDF), in ocular neovascularization (Ma et al., 2005).

Vascular endothelial growth factor (VEGF) binds to specific receptors on the endothelial cells lining blood vessels, leads to the formation of new capillaries (Stefanini et al., 2009). During the last few years, several members of the VEGF family have been described namely the VEGF-A, B, C, D, E and placenta growth factor (PIGF) among which VEGF-A plays a role of prime importance in angiogenesis (Shinkaruk et al., 2003).

Angiogenesis or neovascularization, the formation of neovessels, is a physiological phenomenon endued in vasculature, but is involved in various pathological conditions including cancers and ocular diseases (Sato et al., 2010).

VEGF plays a role in anterior segment diseases. Newly grown vessels in the cornea can lead to an impairment of transparency and visual acuity. Neovascularization of the iris (rubeosis iridis) and the anterior chamber angle may lead to

elevated IOP (Scholl et al., 2010). Also there is marked elevation of VEGF in pterygium (Mauro et al., 2009).

The anti-VEGF antibody bevacizumab has been approved for treatment of various solid cancers including colorectal, lung, and breast cancers as well as glioblastoma and renal cell carcinoma (Hsu et al., 2009). In the last decade, it is used in ocular diseases as for the treatment of choroidal neovascularization in age-related macular degeneration (Sener et al., 2011), macular edema, neovascular glaucoma (Sato et al., 2010) and central retinal vein occlusion (Rensch et al., 2008).

The monoclonal antibodies can selectively target specific molecules, proteins or receptors in the body responsible for pathogenesis of a particular disorder (Biswas et al., 2010).

Monoclonal antibodies against VEGF such as bevacizumab, ranibizumab and pegaptanib, were found effective for the inhibition of corneal neovascularization and the most effective agent was bevacizumab (Sener et al., 2011).

Bevacizumab is used off-label, in topical form or as an intracameral injection, to treat anterior segment neovascularization with encouraging results (Scholl et al., 2010). Subconjunctival injection of bevacizumab reduced bleb

vascularity and may provide an adjunct to current antifibrosis therapy (Coote et al., 2008).

Eye drops can sufficiently penetrate the corneal stroma and anterior chamber. It has significant effect on inhibition of alkali burn-induced corneal neovascularization (Hosseini et al., 2007), reduce corneal damage (Yoeruek et al., 2008), and lead to a reduction of the vessel diameter. It was generally well-tolerated for up to 12 months (Koenig et al., 2009).

Topical neutralization of VEGF-A at the corneal surface does not have significant side effects on normal corneal epithelial wound healing, normal corneal integrity, or normal nerve fiber density. Therefore, anti-VEGF eye drops seem to be a relatively safe option to treat corneal neovascularization (Bock et al., 2009).

Aim of the study

This essay will review the various types of anti VEGF and their use in the eye with special stress on anterior segment diseases regarding their efficacy and potential complications.