

Ain Shams University Faculty of Science Geology Department

Geological Studies on a Recently Discovered Occurrence of Rare Metals Within Shear Zone at Um Samra area, Central Eastern Desert, Egypt

A Thesis Submitted by

Ahmed Mousad Mohamed Mohamed Ismail

M.Sc. in Geology (2011) Assistant lecturer of Geology, Nuclear Materials Authority

For the Doctor Degree of Philosophy in Science (Ph.D.) in Geology

Geology Department Faculty of Science Ain Shams University

Ain Shams University Faculty of Science Geology Department

Geological Studies on a Recently Discovered Occurrence of Rare Metals Within Shear Zone at Um Samra area, Central Eastern Desert, Egypt

A Thesis Submitted by

Ahmed Mousad Mohamed Mohamed Ismail
M.Sc. in Geology (2011)
Assistant lecturer of Geology,
Nuclear Materials Authority
For the Doctor Degree of Philosophy in Science
(Ph.D.) in Geology

Supervised by

Prof. Dr. Baher Abd El Hamed El- Kalioby Professor of Igneous and metamorphic rocks, Geology Department, Ain Shams University.

Prof. Dr.Mohammed El Ahmady Ibrahim Professor of Geology, Nuclear Materials Authority, Cairo, Egypt.

Prof. Dr. El Sayed Hassan El Sawey Professor of Geochemistry, Nuclear Materials Authority, Cairo, Egypt **Dr. Mohamed Salem Kamar**Ass. Prof. of Geology,
Nuclear Materials Authority, Cairo, Egypt

Geology Department Faculty of Science Ain Shams University 2018

Qualification

Name: Ahmed Mousad Mohamed Ismail

Scientific Degree: B. Sc. (2003) M. Sc. (2011)

Department: Geology

Faculty: Science

University: Ain Shams

ACKNOWLEDGEMENT

Praise be to **ALLAH**, the lord of the worlds, who guided and aided me to bring-forth to light this work and by whom grace this work has been completed.

My grateful thanks to **Prof. Dr. Baher Abd El Hamed El-Kalioby** Professor of Igneous and metamorphic rocks, Geology Department, Faculty of Science, Ain Shams University, for his kind support, review and critical comments on the present work.

My grateful thanks also to **Prof. Dr. Mohammed El Ahmady Ibrahim**, Professor of Geology, Nuclear Materials Authority, Cairo, Egypt, for his direct supervision, his kind and continues guidance at critical stages during all steps of the present work, and all over the time this work took to finish also his fruitful discussions.

I would like to express my thanks to **Prof.Dr. El Sayed Hassan El Sawey**, Professor of Geochemistry, Nuclear Materials
Authority, Cairo, Egypt, for his direct supervision, guidance, help
and for his kind support.

1 would like to express my thanks to **Dr. Mohamed Salem Kamar** Ass. Prof. of Geology, NMA, Cairo, Egypt, for his direct supervision, help in the field trips guidance and giving the time to do this work.

I would like to thank the Nuclear Materials Authority (NMA) for its contribution and practical support from labs and instruments. Also all thanks and appreciation to the staff members of mineralogy department in (NMA) for their encouragement and cooperation.

Finally, I wish to thank my father, mother, wife, Sons, and friends for their encouragement and support.

Abstract

Um Samra - Um Bakra area is located in the southern part of the Central Eastern Desert of Egypt and covered by;

1) ultramafic rocks and volcanogenic sediments, synorogenic granites, olivine gabbros and post-orogenic granites. 2) post-granitic dykes (basic and intermediate) and veins (black, red jasper and quartz veins).

Um Samra-Um Bakra shear zone strikes N70°W, dips 45°/SSW, ranges from 20 to 500 m in thickness and extends 10 km in length. The shear zone consists of fine–grained granites, ferruginous, kaolinitized, rich in uranium, wolframite and Niobium-Tantalum (Nb-Ta) minerals. Two types of quartz veins recorded in the study area; a) barren milky quartz veins are limited only to the Um Samra - Um Bakra shear zone and b) mineralized quartz veins intruded post-orogenic granites (pyrite, arsenopyrite, covellite, gold, galena and bornite).

Three generations of silica veins differ in color, mineralization and age intruded the shear zone. The milky quartz veins is the youngest silica phase, barren, running WNW and dipping 70°/ SSW direction. The red jasper (second phase) has N 60°-76° W trend, dipping 45°/SSW discontinuous, brecciated, and rich in Cr, Ni, Sn, Zn and Cuminerals. The oldest phase is represented by black jasper trending N75°W and dipping 50°-65° /SSW, and rich in Cr,

Ni, and Au mineralization. The black jasper veins are richer in Ni, Cr, Zn, Cu, Au and Y than red one.

The studied granites are classified as monzogranite, syenogranites and alkali feldspar granites and evolved from acidic differentiated magma calc-alkaline characters. Magma type is high-K nature, monzogranites plot in metaluminous area while the syenogranites and alkali feldspar granites plot in felsic peraluminous and low peraluminous field. All granites are A-type granites specifically A_2 .

The radiometric investigation surveys in postorogenic granites reflect weak positive relation between eU and eTh (r = 0.23) in fresh granites and (r = 0.38) in alterd granites. The radioactive anomaly recorded in altered granite in closed to red jasper vein with 2185 ppm an average.

The acid pug leaching experiments were conducted of uranium in high anomaly sample in altered granites. The obtained leaching efficiencies were about 98.8% for U.

List of Contents

Page

ACKNOWLEDGEMENTS	
ABSTRACT	
LIST OF FIGURES	VII
LIST OF PLATES	XV
LIST OF TABLES	XVI
CHAPTER ONE	
INTRODUCTION	1
1.1. Location and accessibility	2
1.2. Physiography and climate	2
1.3. Aim and scope of the present work	5
1.4. Previous work	6
1.5. Methodology	9
1.6. Instrument and techniques	11
CHAPTER TWO	
GEOLOGY AND PETROGRAPHY	13
2.1. Ultramafic and related rocks	14
2.2. Arc volcanogenic sediments	17
2.3. Syn-orogenic granites	18
2.4. Olivine gabbros (younger gabrros)	20
2.5. Post-orogenic granites	24
2.5.1. Monzogranites	25
2.5.2. Syenogranites	30
2.5.3. Alkali feldspar granites	31
2.6. Post granitic dykes and veins	35
2.6.1. basic dykes	35
2.6.2. Intermediate dykes (Porphyritic andesite)	37
2.6.3. Quartz veins	37
2.7. Um Samra - Um Bakra shear zone	42
2.8. Alterations	49
CHAPTER THREE	
MINERALOGY	52
3.1. Radioactive minerals	52
3.1.a. Secondary Uranium minerals	52
3.1.b. Thorium mineral	56

Contents

3.1.c. Radioactive bearing minerals	56
3.2. Base Metals	58
Galena	58
Pyrite	59
Sphalerite	62
Cassiterite	61
Wolframite	62
Zincite	63
Ni-Chromite	63
Cr-spinel	63
3.3. Copper Minerals	65
Atacamite	65
Paratacamite	65
Cuprite	65
Crysocolla	66
3.4. Nb- Ta Minerals	69
Columbite	69
Fergusonite	70
Plumbopyrochlore	70
3.5. Native minerals	71
Gold	71
Native Nickel	72
3.6. Rare earth elements bearing minerals	73
Monazite	73
Allanite	73
Xenotime	74
Fluorite	74
3.7. Oxides	76
Rutile	76
Anatase	76
Hematiite	77
Ilmenite	78
Goethite	78
Magnetite	78
3.8. Associated minerals	80
Fluor-apatite	80
Phlogopite	80
Dickite	81

Contents

CHAPTER FOUR	
GEOCHEMISTRY	83
4.1. Introduction	83
4.2. General geochemical characteristics	83
4.3 Geochemical classification	89
4.4. Magma Type	91
4.5. Tectonic setting	94
4.6. Petrogenesis	99
4.7. Geochemistry of altered granitic rocks	104
4.7.1. Metasomatic alteration	105
4.7.2. Hydrothermal alteration types	105
4.7.3. Alteration in post-orogenic granites	107
4.7.4. Type of alteration	109
4.8. Geochemistry of red and black jasper	119
4.9. Rare earth elements (REEs) geochemistry	121
4.10. REE tetrad effect	122
CHAPTER FIVE	
SPECTROMETRIC PROSPECTING	127
5.1. Introduction	127
5.2. Field investigation	128
5.3. Distribution of radioelements in fresh granites at Um	130
Samra-Um Bakra area	130
5.4. Distribution of radioelements in altered granites at	134
Um-Samra-Um Bakra area	134
5.5. Distribution of radioelements in mineralized shear	134
zone at Um Samra-Um Bakra shear zone.	134
5.6. Distribution of radioelements in veins at Um Samra-	137
Um Bakra shear zone.	
5.6.1. Black jasper veins	137
5.6.2. Red jasper veins	141
5.6.3. Milky quartz veins	141
5.7. Origin of mineralization	146
CHAPTER SIX	
RECOVERY OF URANIUM	148
6.1. Experiments	148
6.1.1. Leaching procedures	148
6.1.1.a Sulfuric acid agitation leaching of uranium	148

Contents

6.1.1.b. Pug leaching (sulfurization roasting)	149
6.2. Results and discussion	150
6.2.1. Nature of Um Samra - Um Bakra altered granite	150
6.2.2. Results of sulfuric acid agitation leaching	151
process	151
6.2.3. Effect of H ₂ SO ₄ concentration	151
6.2.4. Effect of leaching time	152
6.2.5. Effect of leaching temperature:	153
6.2.6. Effect of solid/liquid ratio	154
6.2.7. Effect of sodium chlorate addition	155
6.3. Results of sulfuric acid pug leaching process	158
6.3.1. Effect of sulfuric acid input amount	158
6.3.2. Effect of curing time	159
6.3.3. Effect of curing temperature	161
6.4. Recovery of uranium from sulfate leach liquor	163
CHAPTER SEVEN	
SUMMARY AND CONCLUSION	165
REFERENCES	174
الملخص العربى	

Page

Fig. (1.1): Landsat image shows location of the study area	3
Fig. (1.2) Landsat Tm-Image (7,3,2) RGB of Gabel Um Samra-	4
Um Bakra area interpreted from Landsat color composite.	4
Fig. (2.1) Geological map of Um Samra-Um Bakra area.	15
Fig. (2.2a) Lineaments density map for Um Samra- Um Bakra	16
area	10
Fig. (2.2b) Rose diagram showing the main trends and lengths	16
of fractures in the study area.	10
Fig. (2.3) Intrusive sharp contact between volcanogenic	
sediments (VM) and post-orogenic granites (PG) in the study	19
area. Looking S.	
Fig. (2.4): Sharp intrusive contact between granites (PG) and	21
olivine gabbros (G).	21
Fig. (2.5): Polished slabs in gabbros showing hybrid rock.	21
Fig. (2.6): QAP ternary diagram for the studied post-orogenic	27
granites (after Streckeisen, 1976).	21
Fig. (2.7): Polished slab of medium to coarse grained	27
monzogranites.	27
Fig. (2.8): Monzogranite exploited as ornamental stone in some	27
quarries.	27
Fig. (2.9) Showing gabbro xenoliths enclosed in monzogranites.	27
Fig. (2.10): Gradational contacts between syenogranite and	20
alkali feldspar granites. Looking E	30
Fig. (2.11 a to d): Field photo showing WNW-ESE Um Samra-	
Um Bakra shear zone with jasperoid silica veins, structure	16
controlled, ferruginous, kaolinized and reddish pink to grayish	46
in color.	
Fig. (2.12): Photomicrographs showing; a) meta-autunite crystal	
surrounded by phurcalite mineral in altered granites. C.N.,	16
X=40 and b) phurcalite mineral associated with iron oxide in	46
altered granites. C.N., X=40.	

Fig. (2.13): Showing Kaolinization map for Um Samra - Um Bakra area.	51
Fig .(2.14): showing ferrugination map for Um Samra - Um Bakra area.	51
Fig. (3.1): XRD pattern showing meta-autunite and phurcalite in	
Um Samra-Um Bakra area.	54
Fig. (3.2): XRD pattern of phurcalite of the studied altered	<i>5.4</i>
granites, Um Samra-Um Bakra area.	54
Fig. (3.3): EDX and BSE images showing meta-autunite and	<i>E E</i>
phurcalite from the altered granites, Um Samra-Um Bakra area.	55
Fig. (3.4): XRD pattern of kasolite from the studied altered	<i>E E</i>
granites, Um Samra-Um Bakra area.	55
Fig. (3.5): EDX and BSE images showing uranothorite in Um	56
Samra-Um Bakra area.	30
Fig. (3.6): Different colors of zircon.	57
Fig. (3.7): XRD Pattern of zircon from altered granites	57
Fig. (3.8): EDX and BSE images of zircon from altered	58
granites, Um Samra-Um Bakra area.	
Fig. (3.9): EDX and BSE images showing zircon include sphene	58
from the stream sediments of the studied area.	20
Fig. (3.10): a&b) Photographs showing galena and pyrite	
disseminated in mineralized quartz veins. C&d) Photographs	59
showing separated galena and pyrite grains from Um Samra-	3)
Um Bakra area.	
Fig. (3.11): XRD Pattern of galena and pyrite from the quartz	60
vein of Um Samra-Um Bakra area.	
Fig. (3.12): EDX and BSE images of galena and pyrite from the	60
mineralized quartz vein of Um Samra-Um Bakra area.	
Fig.(3.13): EDX and BSE images showing alteration effect in	60
pyrite and galena of Um Samra-Um Bakra area.	
Fig.(3.14): EDX and BSE images showing sphalerite (dark) and	
Galena (light) minerals, from mineralized quartz veins, Um	61
Samra-Um Bakra area.	
Fig. (3.15): EDX and BSE images showing cassiterite from the	62

black jasper veins, Um Samra-Um Bakra area.	
Fig. (3.16): EDX and BSE image of wolframite from the	62
studied altered granites, Um Samra-Um Bakra area.	02
Fig. (3.17): EDX and BSE images showing zincite minerals,	63
Um Samra-Um Bakra area.	03
Fig. (3.18): XRD Pattern of Ni-chromite mineral.	64
Fig. (3.19): EDX and BSE images showing Cr-spinel minerals,	61
Um Samra-Um Bakra area.	64
Fig. (3.20): Photograph showing copper minerals from black	66
jasper of the study area.	00
Fig. (3.21): different types of copper minerals a) atacamite	
mineral, b) paratacamite mineral, c) cuprite mineral and d)	67
crysocolla mineral.	
Fig. (3.22): XRD Pattern of atacamite from black jasper of Um	67
Samra- Um Bakra area.	07
Fig. (3.23): EDX and BSE images showing atacamite in black	68
jasper of Um Samra- Um Bakra area.	08
Fig. (3.24): XRD Pattern of paratacmite mineral of the black	68
jasper of Um Samra-Um Bakra	08
Fig. (3.25): EDX and BSE images showing paratacamite of the	68
black jasper of Um Samra- Um Bakra area.	00
Fig. (3.26): EDX and BSE images showing cuprite minerals	69
from black jasper in Um Samra-Um Bakra area.	0)
Fig. (3.27): EDX and BSE images showing crysocolla minerals,	69
from red jasper veins.	0)
Fig. (3.28): EDX and BSE images showing columbite of the	70
studied altered granites, Um Samra-Um Bakra area.	70
Fig. (3.29): EDX and BSE images of fergusonite of the studied	71
altered granites, Um Samra-Um Bakra area.	7 1
Fig. (3.30): EDX and BSE images of plumbopyrochlore of the	71
studied altered granites, Um Samra-Um Bakra area.	7 1
Fig. (3.31): EDX and BSE images showing gold in quartz of the	72
studied area.	12
Fig. (3.32): EDX and BSE images showing native Ni in quartz	72

of the studied area.	
Fig. (3.33): EDX and BSE images showing monazite in the	73
stream sediments.	13
Fig. (3.34): EDX and BSE images showing allanite from the	74
studied altered granites, Um Samra-Um Bakra area.	/4
Fig. (3.35): EDX and BSE images of xenotime in black jasper,	75
Um Samra-Um Bakra area.	73
Fig. (3.36): Photographs showing fluorite minerals, Um Samra-	75
Um Bakra area.	/3
Fig. (3.37): XRD Pattern of fluorite from the studied altered	75
granites, Um Samra-Um Bakra area.	/3
Fig. (3.38): XRD Pattern of rutile from the studied altered	76
granites, Um Samra-Um Bakra area.	/6
Fig. (3.39): XRD Pattern of anatase mineral, Um Samra-Um	77
Bakra area.	/ /
Fig. (3.40): Photograph showing hematite minerals in the study	77
area,	/ /
Fig. (3.41): XRD Pattern of hematite of the studied altered	78
granites, Um Samra-Um Bakra area.	/6
Fig. (3.42): XRD Pattern of ilmenite, Um Samra-Um Bakra	79
area.	17
Fig. (3.43): XRD Pattern of goethite mineral, Um Samra-Um	79
Bakra area.	17
Fig. (3.44): XRD Pattern of magnetite mineral, Um Samra-Um	79
Bakra area.	1)
Fig. (3.45): XRD Pattern of fluor-apatite of the studied altered	80
granites, Um Samra-Um Bakra area.	80
Fig. (3.46a,b): EDX and BSE images showing apatite from the	81
studied altered granites, Um Samra-Um Bakra area.	01
Fig.(3.47): EDX and BSE images showing phlogopite at Um	81
Samra-Um Bakra area.	01
Fig. (3.48): Photograph showing Dickite minerals from black	82
jasper in the study area	02
Fig. (3.49): XRD Pattern of Dickite mineral, Um Samra-Um	83