

CFD ANALYSIS AND ENERGY SAVING IN TYPICAL MOSQUES

By

Eng. Linh Ghanam Jbara

B.Sc Mechanical Engineering in

College of Engineering – Alanbar University

IRAQ - 2006

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfilment of the
Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

CFD ANALYSIS AND SAVING ENERGY IN TYPICAL MOSQUES

By Eng. Linh Ghanam Jbara

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfilment of the
Requirements for the Degree of MASTER OF SCIENCE

In MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr. Essam E. Khalil

Dr. Waleed A. Abdelmaksoud

Professor of Mechanical
Power Engineering

Lecturer of Mechanical Power Engineering

Dr. Ismail Mohamed El-bialy

Lecturer of Mechanical
Power Engineering

Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

CFD ANALYSIS AND SAVING ENERGY IN TYPICAL MOSQUES

By Eng. Linh Ghanam Jbara

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfilment of the
Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil Hassan Khalil,

Thesis Advisors

Professor of Mechanical Power Engineering Dept., Faculty of Engineering, Cairo University and Member

Prof. Dr. Mahmoud Ahmed Fouad,

Member

Professor of Mechanical Power Engineering Dept., Faculty of Engineering, Cairo University

Prof. Dr. Osama E. Abdel-latif

Member

Professor of Mechanical Power Engineering Dept., Shoubra Faculty of Engineering, Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

DEDICATION

To my beloved family

Thanks for your

Unconditional love,

Constant support,

And encouragement.

I love you all dearly.

ACKNOWLEDGEMENT

In the name of Allah, the Beneficent, the Merciful. Praise and Gratitude be to Allah (SWT) for giving me strength and guidance, so that this dissertation can be finished accordingly.

This thesis is a collection of not only hard work, perseverance and continuous effort over the past three years, but also encouragement, cooperation and support from many people who deserve to be acknowledged.

I hereby would like to express my deep gratitude and thanks to Prof. Dr. Essam E. Khalil, Dr. Waleed A. Abdelmaksoud and Dr. Ismail Albialy, for the support, continuous encouragement and distinctive supervision throughout the course of this work.

Also, I cannot express; in words; my thanks and gratitude to my family for their great and continuous help and support they provided me to finish this work in a suitable form.

Nevertheless, I cannot forget the support of my colleagues in the Mechanical Power Engineering department as well as from my Professors for their encouragement and concern throughout the scope of the work.

To all my team and my friends: thank you very much for what you have done for me. I thank you all for the companionship that made this journey much easier. In fact, I do not need to list your names because I am sure that you know who you are.

Last, but not least, I dedicate this research to my home country, Iraq.

CONTENTS

SUBJECT	PAGE
CONTENTS	vi
LIST OF TABLES	xiv
LIST OF FIGURES	XV
SYMBOLS AND ABBREVIATIONS	xxvii
ABSTRACT	xxxii
CHAPTER 1 INTRODUCTION	1
1.1 General	1
1.2 Typical characteristics of Mosques	2
1.3 Importance of Studying the Mosque	3
1.4 The Timings of the Obligatory Prayers	3
1.5 Pillars of any Prayer	4
1.6 Thermal Comfort Factors	5
1.6.1 Air Temperature	6
1.6.2 Mean Radiant Temperature	6
1.6.3 Air Velocity	6
1.6.4 Relative Humidity (RH)	7
1.6.5 Metabolic Rate	7
1.6.6 Clothing Insulation	8
1.6.7 Lighting	9
1.7 Human Responses to Thermal Stresses	9
1.8 Fanger's Contributions in Thermal Comfort	9
1.9 Indoor Air Quality (IAQ)	10
1.10 Air Exchange Rate	11
1.11 Common Applications for Comfort Air Conditioning	12
CHAPTER 2 LITERATURE REVIEW	14
2.1 Review on Mosque and Islamic Way of Worship	14

2.2 Relations between Previous Work and Present Work	24
CHAPTER 3 GOVERNING EQUATIONS	25
3.1 Introduction	25
3.2 Continuity Equation	25
3.3 Momentum Conservation Equations	26
3.4 Energy Equation	27
3.5 Species Transport Equations	29
3.6 Turbulence Modeling	30
3.6.1 Selection a Turbulence Models	32
3.6.2 The RNG k - ϵ Model	33
3.6.2.1 Equations of transport for the RNG k - ϵ Model	
3.6.2.2 Effective Viscosity Modeling	33
3.7 Numerical models that employed in the thermal comfort prediction	34
3.7.1 The model of PMV and PPD	34
3.7.2 Predicted present dissatisfied(PPD)	36
3.8 CFD for Indoor Space Modeling	37
CHAPTER 4 MODELING AND CHARACTARISTICS IN MOSQUE	38
4.1 Introduction	38
4.2 Mosque Data	38
4.3 Case Meshing	43
4.4 Geometry Modelling	44
4.4.1 Mosque Space Modelling	44

4.4.2 A/C Units Modelling	45
4.4.3 Worshiper Modelling	46
4.4.4 Occupant (Worshiper) Boundary Details	47
4.5 Mosque Indoor Space Environment Boundaries	49
CHAPTER 5 RESULTS AND DISCUSSION	51
5.1 Introduction	51
5.2 Planes that Show Results	51
5.2.1 Vertical (XZ) Plane Plotting	51
5.2.2 Vertical (YZ) Plane Plotting	52
5.2.3 Horizontal Plane Plotting	53
5.3 The Studied Different Cases	54
5.4 Case Studies Specifications	56
5.4.1 FAJR prayer	56
5.4.1.1 Static Temperature contours(K).	57
5.4.1.1.a- Horizontal plane (XY) at Z= 1.6m from floor level	
5.4.1.1 Static Temperature contours(K).	58
5.4.1.1.b- Vertical plane (XZ) at Y=9.5m from Qebla	58
5.4.1.1 Static Temperature contours(K).	59
5.4.1.1.c- Vertical plane (YZ) at X=12.5m from lift side	59
5 .4.1.2 Relative Humidity contours (%)	60
5.4.1.2.a- Horizontal plane (XY) at Z= 1.6m from floor level	60
5.4.1.2 Relative Humidity contours (%)	61
5.4.1.2.b- Vertical plane (XZ) at Y=9.5m from Qebla	61
5.4.1.2 Relative Humidity contours (%)	62