

## **Thesis Entitled**

# The Effect of Rare-Earth Metal Addition on the Oxidation and Hot Corrosion Resistance of Chromo-aluminized Nickel-Base Super Alloy

#### **Presented**

By

## **Mohamed Ali Mahmoud**

**A Thesis Submitted** 

To
Faculty of Science
In Partial Fulfillment of the Requirements for
The Degree of Master of Science
(Chemistry)

Chemistry Department Faculty of Science Ain Shams University

(2016)



#### APPROVAL SHEET FOR SUBMISSION

Title of M.Sc. Thesis

The Effect of Rare-Earth Metal Addition on the Oxidation and Hot Corrosion Resistance of Chromo-aluminized Nickel-Base Super Alloy

By

## **Mohamed Ali Mahmoud**

B.Sc.in major chemistry, Faculty of science Ain shams University 2010

| The thesis has been approved for submission b supervisors:                                                     | y the       |
|----------------------------------------------------------------------------------------------------------------|-------------|
| Prof. Dr. \ Mohamed Aziz El Zomor                                                                              | •••••       |
| Professor of Metallurgy Tabbin Institute for Metallurgical Studies                                             |             |
| Prof. Dr. \ Mohamed Hussien Ahmed                                                                              | •••••       |
| Professor of Metallurgy Tabbin Institute for Metallurgical Studies                                             |             |
| Dr. \ Ahmed Osman Youssef Associate Professor of Analytical Chemistry, Faculty of Science-Ain Shams University | ••••••••••• |

**Prof. Dr. \ Hammed Derbala** 

Chairman of Chemistry Department,



Chemistry Department
Faculty of Science
Faculty of Science, Ain Shams University

### **Statement**

This thesis is submitted in partial fulfillment of the M.Sc Degree, Faculty of Science, Ain Shams University.

In addition to the work carried out in this thesis the candidate, **Mohamed Ali Mahmoud** has attended postgraduate studies in the following topics and passed successfully in the final examination in the academic year 2010-2011:

| 521 | Coordination Chemistry                        |
|-----|-----------------------------------------------|
| 522 | Radiochemistry and Separation Techniques      |
| 523 | Electrochemistry and Electrochemical Analysis |
| 524 | Group Theory and Computer Programming         |
| 525 | Spectroscopic Methods for Structural and      |
|     | Analytical Chemistry                          |
|     | TOEFL                                         |

#### Prof. Dr. Hammed Derbala

Chairman of Chemistry Department, Faculty of Science, Ain Shams University

## Abstract

Nimonic 75 alloy was coated with two different types of coatings; Chromoaluminized coating and Zr-doped Cr-Al coating. Diffusion coating was carried out by pack cementation process at 1000 °C for 8 h. Cyclic oxidation tests of Nimonic 75 and its coated specimens were conducted at 900 °C, 1000°C and 1100°C in air for a total period of 100 h. The structures of the coated Nimonic 75 alloy before and after high temperature oxidation were investigated using light microscopy LM, scanning electron microscopy/energy dispersive spectroscopy SEM/EDS, and X-ray diffraction characterization techniques. Cyclic hot corrosion tests of Nimonic 75 and its coated system deposited with 2-4 mg/cm<sup>2</sup> Na<sub>2</sub>SO<sub>4</sub> were conducted at 900 °C in air for 150 h at 10 h cycle. The results indicated that Zr-doped Cr-Al coating is expected to be more effective in increasing the oxidation and hot corrosion resistance of Nimonic 75 alloy. The role of zirconium can be attributed to an improvement of the adherence of the oxide scales and reducing voids formation at the coating/metal interface during cyclic oxidation. The parabolic oxidation rate constants  $K_{\mathcal{P}}$  for cyclic oxidation of uncoated alloy, Cr-Al coated and Zr/Cr-Al coated are (1.7, 0.77, 0.61) 10-6  $mg^2.cm^4.s^1$  at 900°C, (10.08, 5.2, 3.91)  $10^{-6}$   $mg^2.cm^4.s^1$  at 1000 °C and (41.27, 26.69, 18.13) 10-6 mg<sup>2</sup>.cm<sup>-4</sup>.s<sup>-1</sup> at 1100 °C. XRD analysis of the surface of uncoated Nimonic-75 alloy specimen after cyclic oxidation in air at 1000 °C for total period of 100 h identified the presence of Cr<sub>2</sub>O<sub>3</sub> and nonprotective oxide scale containing NiO and Ni(Cr<sub>2</sub>O<sub>4</sub>) phases. On the other hand, the XRD analysis of the surface of Cr-Al coated specimen after cyclic oxidation at 1000 °C, for 100 h identified the presence of protective oxide scale containing  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> and  $\beta$ -NiAl phases. XRD analysis of the surface of Cr-Al-Zr coated specimen after hot corrosion at 900 °C, for 150 h identified the presence of protective oxide scale containing  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> and  $\beta$ -NiAl phases but Al completely consumed in Cr-Al coating and not appeared Al phases in its XRD analysis.

<u>Keywords:</u> superalloys, diffusion coating, pack cementation, Zr-doped, oxidation, hot corrosion.

# Acknowledgement

- First of all, my greatest thanks to ALLAH for giving me the power to complete this work.
- My deep gratitude to **prof. Dr/M. A. ElZomor** Head of Heat Treatment Department Tabbin Institute for Metallurgical Studies (TIMS) for his discerning supervision, encouragement, fatherly helps and fruitful guidance.
- I would like to thank **prof. Dr/M. H. Ahmed (**TIMS) for his support, motivation, and valuable advice, and hard efforts in this work.
  - Also my thank to **Dr/A. O. yossef** of Chemistry Department-Ain Shams University for his help and Keen interest, supervision, encouragement and hard efforts.
- I am also grateful to **Dr. Tarek Samy**, Director of (TIMS) for giving me the opportunity to carry out this study and for allowing all experimental works to be carried out in TIMS labs.
  - I would also like to thank my colleagues and TIMS staff who contributed by any mean to produce this work.
    - I wish to thank **Dr. Sameh Khafagi**, TIMS for providing the alloy used throughout this research.
- Last but not at least I am grateful to **my family**, without their encouragement, and patience, this work could not be achieved.

# Aim of the work

The aim of the present work is to study the effect of simultaneous chromium and aluminum deposition by pack cementation method on the surface structure and composition and high temperature oxidation and hot corrosion resistance of NIMONIC-75 Ni-base superalloy. The effect of Zirconium reactive element addition on the surface modification of the coating layer, and the improvement of high temperature oxidation and hot corrosion resistance of the chromo-aluminized Ni-base superalloy was also investigated.

| Title                                         | Page |
|-----------------------------------------------|------|
| Abstract                                      | i    |
| Acknowledgment                                | ii   |
| Aim of the work                               | iii  |
| Contents list                                 | iv   |
| List of figures                               | vii  |
| List of tables                                | xvi  |
| Chapter 1 : Introduction and Literature       |      |
| Review                                        |      |
| Introduction                                  | 1    |
| Literature Review                             | 6    |
| 1.1. Superalloys                              | 6    |
| 1.2. Superalloy Systems                       | 8    |
| 1.2.1. Fe-Ni-Base                             | 8    |
| 1.2.2. Ni-Base                                | 9    |
| 1.2.3. Co-Base                                | 10   |
| 1.3. Superalloy Properties and Microstructure | 10   |
| 1.4. Nimonic-75 Superalloy                    | 12   |
| 1.5. High Temperature Oxidation               | 14   |
| 1.5.1. Oxidation kinetic                      | 14   |
| 1.5.2. Oxide layer growth                     | 18   |
| 1.6. Hot Corrosion                            | 19   |
| 1.6.1. Types of hot corrosion                 | 20   |
| 1.6.1.1. Type I hot corrosion                 | 21   |

| 1.6.1.2. Type II hot corrosion                                        | 22 |
|-----------------------------------------------------------------------|----|
| 1.6.2. Acidic and basic fluxing                                       | 23 |
| 1.6.3. Stages of hot corrosion                                        | 24 |
| 1.6.4. Corrosion test methods                                         | 25 |
| 1.7. Oxidation and Hot Corrosion Resistant Coatings                   | 27 |
| 1.7.1. Diffusion coatings on Ni-base superalloys                      | 29 |
| 1.7.1.1. Chromizing coatings                                          | 32 |
| 1.7.1.2. Aluminizing coatings                                         | 32 |
| 1.7.1.3. Siliconizing coatings                                        | 33 |
| 1.7.1.4. Modified aluminide coatings                                  | 33 |
| 1.7.1.4.1. Chromizing-aluminizing                                     | 34 |
| 1.7.1.4.2. Reactive element (RE)-doped chromo-<br>aluminized coatings | 36 |
| 1.7.2. Overlay coatings                                               | 37 |
| 1.8. Pack Cementation Process                                         | 39 |
| 1.8.1. Historical aspects of the pack cementation                     | 39 |
| process 1.8.2. Industrial development of the pack cementation process | 40 |
| 1.8.3. The pack cementation mixture                                   | 41 |
| 1.8.4 The pack reactions                                              | 41 |
| 1.8.5. Kinetics aspects of the process                                | 43 |
| Chapter 2 : Experimental Techniques                                   |    |
| and Procedures                                                        |    |
| 2.1. Preparation of Materials                                         | 47 |
| 2.2. Pack Cementation                                                 | 49 |

| 2.2.1. Preparation of powder packs                                                                                                                                                                                                                                                                                                                                                                                                   | 49                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 2.2.2. Pack cementation process                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                     |
| 2.3. Microstructural Characterization                                                                                                                                                                                                                                                                                                                                                                                                | 52                                     |
| 2.3.1. Specimens preparation                                                                                                                                                                                                                                                                                                                                                                                                         | 52                                     |
| 2.3.2. Light microscopy                                                                                                                                                                                                                                                                                                                                                                                                              | 54                                     |
| 2.3.3. Measurement of coating thickness                                                                                                                                                                                                                                                                                                                                                                                              | 56                                     |
| 2.4. Microhardness Testing                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                     |
| 2.5. X-ray Diffraction                                                                                                                                                                                                                                                                                                                                                                                                               | 57                                     |
| 2.6. Scanning Electron Microscopy SEM and Energy                                                                                                                                                                                                                                                                                                                                                                                     | 58                                     |
| Dispersive X-ray Spectroscopy EDS                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
| 2.7. High Temperature Oxidation Test                                                                                                                                                                                                                                                                                                                                                                                                 | 59                                     |
| 2.8. Hot Corrosion Studies                                                                                                                                                                                                                                                                                                                                                                                                           | 60                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| <b>Chapter 3: Results and Discussion</b>                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| Chapter 3: Results and Discussion  3.1. Microstructure Characterization                                                                                                                                                                                                                                                                                                                                                              | 62                                     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62<br>62                               |
| 3.1. Microstructure Characterization                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| <ul><li>3.1. Microstructure Characterization</li><li>3.2. Chromo-aluminized Diffusion Coating at 900°C</li></ul>                                                                                                                                                                                                                                                                                                                     | 62                                     |
| <ul> <li>3.1. Microstructure Characterization</li> <li>3.2. Chromo-aluminized Diffusion Coating at 900°C</li> <li>3.2.1. Microstructure of substrate</li> </ul>                                                                                                                                                                                                                                                                      | 62<br>62                               |
| <ul> <li>3.1. Microstructure Characterization</li> <li>3.2. Chromo-aluminized Diffusion Coating at 900°C</li> <li>3.2.1. Microstructure of substrate</li> <li>3.2.2 Appearance of coated specimens</li> </ul>                                                                                                                                                                                                                        | 62<br>62<br>62                         |
| <ul> <li>3.1. Microstructure Characterization</li> <li>3.2. Chromo-aluminized Diffusion Coating at 900°C</li> <li>3.2.1. Microstructure of substrate</li> <li>3.2.2 Appearance of coated specimens</li> <li>3.2.3. Characterization of coating</li> </ul>                                                                                                                                                                            | 62<br>62<br>62<br>63                   |
| <ul> <li>3.1. Microstructure Characterization</li> <li>3.2. Chromo-aluminized Diffusion Coating at 900°C</li> <li>3.2.1. Microstructure of substrate</li> <li>3.2.2 Appearance of coated specimens</li> <li>3.2.3. Characterization of coating</li> <li>3.2.4. Microhardness of coating layer and substrate</li> </ul>                                                                                                               | 62<br>62<br>62<br>63<br>68             |
| 3.1. Microstructure Characterization 3.2. Chromo-aluminized Diffusion Coating at 900°C 3.2.1. Microstructure of substrate 3.2.2 Appearance of coated specimens 3.2.3. Characterization of coating 3.2.4. Microhardness of coating layer and substrate 3.2.5. Oxidation resistance                                                                                                                                                    | 62<br>62<br>62<br>63<br>68<br>70       |
| <ul> <li>3.1. Microstructure Characterization</li> <li>3.2. Chromo-aluminized Diffusion Coating at 900°C</li> <li>3.2.1. Microstructure of substrate</li> <li>3.2.2 Appearance of coated specimens</li> <li>3.2.3. Characterization of coating</li> <li>3.2.4. Microhardness of coating layer and substrate</li> <li>3.2.5. Oxidation resistance</li> <li>3.2.5.1. Cyclic oxidation of uncoated Nimonic</li> <li>75 alloy</li> </ul> | 62<br>62<br>62<br>63<br>68<br>70<br>70 |

| 3.3.4. Hot corrosion resistance of uncoated and Cr/Al coated specimens | 83  |
|------------------------------------------------------------------------|-----|
| 3.3.5. Conclusions                                                     | 91  |
| 3.3. Zr-doped Chromo-aluminized Coating at 1000°C                      | 93  |
| 3.3.1. Characterization of coatings                                    | 93  |
| 3.3.2. Microhardness of coating                                        | 98  |
| 3.3.3. Oxidation of coated system                                      | 99  |
| 3.3.4. Hot corrosion resistance of coated system                       | 110 |
| 3.3.5. Conclusions                                                     | 122 |
| References                                                             |     |
| English summary                                                        |     |
| Arabic summary                                                         |     |

| Figure |                                                          | Page |
|--------|----------------------------------------------------------|------|
|        | Chapter 1                                                |      |
| 1.1    | Alloying elements used in Ni-base superalloys.           | 11   |
|        | Beneficial minor elements are marked with cross-         |      |
|        | hatch, while detrimental elements are marked with        |      |
|        | horizontal line hatch.                                   |      |
| 1.2    | Different types of behavior for high temperature         | 17   |
|        | oxidation and corresponding mass gain curves. (a)        |      |
|        | Parabolic oxidation (b) Sub-parabolic oxidation (c)      |      |
|        | Breakaway oxidation (d) Oxide scale spallation. (e)      |      |
|        | Evaporation of volatile species.                         |      |
| 1.3    | Two archetypes of the oxide scale growth by              | 18   |
|        | diffusion through the scale. The black dot line shows    |      |
|        | the location of the scale growth.                        |      |
| 1.4    | The schematic mode of high temperature degradation       | 21   |
| 1.5    | Some common coating methods.                             | 28   |
| 1.6    | Classification of the coating methods according to       | 29   |
|        | the status of the available coatings.                    |      |
| 1.7    | Relative oxidation and corrosion resistance of high      | 38   |
|        | temperature coating systems                              |      |
| 1-8    | Schematic illustration of the interaction with the       | 39   |
|        | substrate (superalloy) of Aluminade and Overlay          |      |
|        | coating: bare interaction for the latter, interdiffusion |      |
|        | between coat and alloy for the former.                   |      |
| 1-9    | The main chemical reactions involved in the pack         | 41   |
|        | cementation process.                                     |      |

| 1-10 | Schematic of the formation of a single layer         | 44 |
|------|------------------------------------------------------|----|
|      | compound by pack cementation aluminizing in case     |    |
|      | of inward growth. See text for details.              |    |
|      | Chapter 2                                            |    |
| 2.1  | Instrument of material analysis model                | 48 |
|      | SPECTROTEST CCD (TXC01)                              |    |
| 2.2  | Schematic diagram sealed container for coating by    | 51 |
|      | pack cementation                                     |    |
| 2.3  | Sealed steel container for coating by pack           | 51 |
|      | cementation.                                         |    |
| 2.4  | Electric resistance muffle furnace (Phoenix).        | 52 |
| 2.5  | Instruments of Specimen preparation (a) Cutting      | 54 |
|      | machine (b) Mounting machine (c) Grinding            |    |
|      | machine (d) Polishing machine.                       |    |
| 2.6  | Optical microscope model Leco LX 31.                 | 55 |
| 2.7  | Instrument of Vickers microhardness test model       | 57 |
|      | Leco LM70                                            |    |
| 2.8  | X-Ray Diffraction machine model PANalytical          | 58 |
|      | X'pert BRO.                                          |    |
| 2.9  | Scanning electron microscopic models FEI Inspect S   | 59 |
|      | 50.                                                  |    |
| 2.10 | Schematic diagram of horizontal tube furnace for hot | 61 |
|      | corrosion testing                                    |    |

# Chapter 3

| 3.1 | Microstructure LM image of Nimonic 75 etched                                             | 63 |
|-----|------------------------------------------------------------------------------------------|----|
|     | with kalling's Reagent.                                                                  |    |
| 3.2 | The cross-sectional LM images of the Cr-Al coating                                       | 64 |
|     | at 900 $^{0}$ C, (a) before and (b) after chemical etching.                              |    |
| 3.3 | The cross-sectional microstructure SEM image of the                                      | 65 |
|     | Cr–Al coating at 900°C.                                                                  |    |
| 3.4 | EDS line scan and map analysis of Chromo-                                                | 67 |
|     | aluminized coating at 900°C.                                                             |    |
| 3.5 | XRD diffractogram from the surface of Cr-Al coating                                      | 68 |
|     | indicating the presence of $\beta$ NiAl, Ni <sub>2</sub> Al <sub>3</sub> and $\alpha$ Cr |    |
|     | phases.                                                                                  |    |
| 3.6 | The microhardness profile of coating/substrate will                                      | 69 |
|     | be measured by hardness Vickers, penetration force P                                     |    |
|     | = 10 gf, Dwell time = 10 sec.                                                            |    |
| 3.7 | Microhardness imprints on a cross section coating                                        | 69 |
|     | /substrate (Cr-Al) treated at 900°C for 8 h.                                             |    |
| 3-8 | Specific weight change vs. time plot for uncoated                                        | 71 |
|     | Nimonic-75 cyclic oxidized in Air atmosphere                                             |    |
|     | between 900 and 1100 °C for 100 h at 10 h cycle.                                         |    |
| 3-9 | Cross sectional LM images of uncoated Nimonic-75                                         | 72 |
|     | during cyclic oxidation in Air at (a) 900°C, (b)                                         |    |
|     | 1000°C and (c) 1100°C for 100 h.                                                         |    |

| 3-10 | Graph showing the logarithm of the calculated                                        | 73 |
|------|--------------------------------------------------------------------------------------|----|
|      | parabolic rate constant for Nimonic 75 versus the                                    |    |
|      | reciprocal of temperature in degrees Kelvin                                          |    |
| 3.11 | XRD diffractograms of the surface of uncoated                                        | 74 |
|      | Nimonic 75 alloy specimen after cyclic oxidation in                                  |    |
|      | Air at 1000 °C, for 100 h at 10 h cycle, identifying                                 |    |
|      | Cr <sub>2</sub> O <sub>3</sub> , NiO and Ni(Cr <sub>2</sub> O <sub>4</sub> ) phases. |    |
| 3.12 | Specific weight change vs. time plot for uncoated                                    | 76 |
|      | Nimonic-75 alloy, Chromo-aluminizing coating                                         |    |
|      | cyclic oxidized in Air at 900 °C for 100 h.                                          |    |
| 3.13 | Specific weight change vs. time plot for uncoated                                    | 76 |
|      | Nimonic-75 alloy, Chromo-aluminizing coating                                         |    |
|      | cyclic oxidized in Air at 1000 °C for 100 h.                                         |    |
| 3.14 | Specific weight change vs. time plot for uncoated                                    | 77 |
|      | Nimonic-75 alloy, Chromo-aluminizing coating                                         |    |
|      | cyclic oxidized in Air at 1100 °C for 100 h.                                         |    |
| 3.15 | Graph showing the parabolic rate constant Kp for                                     | 78 |
|      | uncoated and coated Nimonic 75 vs. the temperature                                   |    |
| 3.16 | Cross sectional LM images of Cr-Al coating at 900°C                                  | 79 |
|      | after cyclic oxidation in Air at (a) 900 °C, (b) 1000°C                              |    |
|      | and (c) 1100°C for 100 h at 10 h cycle, polished.                                    |    |
| 3.17 | Cross-sectional SEM image, and map analysis of Cr-                                   | 81 |
|      | Al coating after cyclic oxidation in Air at 1000°C for                               |    |
|      | 100h.                                                                                |    |
| 3.18 | EDS line scan of a cross section of Cr-Al coated after                               | 82 |
|      | cyclic oxidation in Air at 1000°C for 100 h                                          |    |

| 3.19 | XRD diffractograms of the surface of Cr-Al coating                                                                | 83 |
|------|-------------------------------------------------------------------------------------------------------------------|----|
|      | specimen after cyclic oxidation at 1000 °C, for 100 h at                                                          |    |
|      | 10 h cycle identifying $\alpha$ -Al <sub>2</sub> O <sub>3</sub> and $\beta$ -NiAl phases.                         |    |
| 3.20 | Specific weight change vs. time plot for uncoated                                                                 | 84 |
|      | Nimonic-75 alloy, Chromo-aluminized coating at 900                                                                |    |
|      | °C after cyclic hot Corrosion in Na <sub>2</sub> SO <sub>4</sub> salt at 900 °C                                   |    |
|      | for 150 h at 10 h cycle                                                                                           |    |
| 3.21 | Cross sectional LM images of Cr-Al coating at                                                                     | 85 |
|      | 900°Cafter cyclic hot Corrosion test in Na <sub>2</sub> SO <sub>4</sub>                                           |    |
|      | salt at 900°C for 150 h, polished.                                                                                |    |
| 3.22 | Surface morphologies of(a)Uncoated Nimonic-75                                                                     | 86 |
|      | and(b)Cr-Al coating at 900 °C after cyclic hot                                                                    |    |
|      | Corrosion test in Na <sub>2</sub> SO <sub>4</sub> salt at 900°C for 150 h.                                        |    |
| 3.23 | Cross-sectional SEM image and map analysis of Cr-Al                                                               | 88 |
|      | coating at 900°C after cyclic hot Corrosion test in                                                               |    |
|      | Na <sub>2</sub> SO <sub>4</sub> salt at 900°C for 150 h.                                                          |    |
| 3.24 | XRD diffractograms of the surface of Cr-Al coating                                                                | 89 |
|      | sample after cyclic hot corrosion at 900 °C, for 150 h at                                                         |    |
|      | 10 h cycle identifying α-Al <sub>2</sub> O <sub>3</sub> and Ni <sub>3</sub> Al and Cr <sub>6</sub> S <sub>7</sub> |    |
|      | phases.                                                                                                           |    |
| 3.25 | Cross-sectional LM image of Zr-doped Cr-Al diffusion                                                              | 94 |
|      | coated sample at 1000°C, 8h.                                                                                      |    |
| 3.26 | SEM micrograph with map analysis of a cross-section                                                               | 95 |
|      | of Zr doped/Cr-Al coated Nimonic-75 alloy                                                                         |    |
| 3.27 | EDS line scan of a cross-section of Zr doped/Cr-Al                                                                | 96 |
|      | coated Nimonic-75 alloy                                                                                           |    |