Comparative Study Between 'Stop and Chop' versus 'Bevel Down Quick Chop' Phacoemulsification Techniques

Thesis

Submitted in Partial Fulfillment of the M.D. Degree in Ophthalmology

By

Ahmed El-Sawy Mahmoud Habib

M.B.B.Ch., M.Sc. Ophthalmology

Faculty of medicine

Cairo University

Supervised by

Dr. Emad Abdel Aal Sawaby

Professor of Ophthalmology
Faculty of Medicine
Cairo University

Dr. Hazem Mohamed Yassin

Assistant Professor of Ophthalmology
Faculty of Medicine
Cairo University

Dr. Nahla Borhan Abo Hussein

Lecturer of Ophthalmology
Faculty of Medicine
Cairo University

Faculty of Medicine
Cairo University
2007

Abstract

A comparative study was made between *group* (A) which included 30 eyes who had phacoemulsification using the 'bevel down quick chop' technique and group (B) which included 30 eyes who had phacoemulsification using the 'stop and chop ' technique. The two groups were compared in terms of equivalent ultrasound time, total energy consumption, the effect on the corneal endothelium efficiency in different grades of nuclear hardness, the effect on corneal wound burn and surgically induced astigmatism. In the 'quick chop' group, the mean equivalent ultrasound time was 15.93 seconds and the mean total energy consumed was 1704.51 joules. In the 'stop and chop group, the mean equivalent ultrasound time was 27 seconds and the mean total energy consumed was 2889 joules. The mean endothelial cell loss after 3 postoperative months was 279 cells/mm² (11.07%) in the 'quick chop' group compared to 407 cells/mm² (16.08%) in the 'stop and chop' group. The two groups had similar effects on surgically induced astigmatism with a mean value of 0.874 D in the 'quick chop' group and 0.75 D in the 'stop and chop' group. We come to conclude that the 'quick chop' technique was effective in reducing the equivalent phaco time, total energy utilized and corneal endothelial cell loss in different grades of nuclear hardness as compared to 'stop and chop'.

Key Words:

Phacoemulsification- Stop and Chop- Quick Chop- bevel down

Acknowledgment

It has always been a great honor and extreme pleasure to work under the guidance and supervision of **Dr**. **Fadia El-Guindy** Professor of ophthalmology, Cairo University, and head of Department 12. Her great care and support have always been a drive for the initiation and progress of this work.

I would like to express my sincere appreciation and deepest thanks to **Dr. Emad Abdel Aal Sawaby**, Professor of ophthalmology, Cairo University, for dedicating so much of his precious time and effort and for his continuous guidance, valuable suggestions and sincere advice all through this work.

No words can express my deepest gratitude to **Dr. Hazem Mohamed Yassin**, Assistant Professor of ophthalmology, Cairo University, for his effort, outstanding help, close scientific guidance and fruitful teaching; without him this work could not be achieved.

I am so much indebted to **Dr. Nahla Borhan Abo Hussein** Lecturer of ophthalmology, Cairo University, for her continuous supervision, illuminating guidance, constructive criticism and wise counseling that helped me to complete this work the best way.

Contents

<u>Abbreviations</u>	
List of Figures	
<u>List of Tables</u>	
List of Charts	
Introduction and Aim of Work	1
Review of Literature	3
 Evolution of Phacoemulsification 	3
 The Physical Principles of Phacoemulsification 	6
Phacoemulsification Techniques	12
Anterior chamber phacoemulsification	13
Iris plane phacoemulsification	13
Posterior Chamber phacoemulsification	13
A-Endocapsular Phacoemulsification	17
Sculpting techniques	17
Divide and Conquer techniques	17
Chip and Flip technique	27
Crack and Flip technique	30
Chopping techniques	32
Phaco Chop technique	32 33
Stop and Chop technique	
Modified Stop and Chop technique	
Short groove nucleofractis	37
Phaco drill technique	38
Phaco Slice and Separate	40
Nuclear Preslice technique	41
Prechop technique	43
B- Supracapsular Phacoemulsification	45
Phaco Flip technique	46
Phaco Hemi-Flip technique	47
Tilt and Tumble technique	48 48
Phaco One Chop Nucleotomy technique	
Quick Chop Phacoemulsification	
Performing Phaco quick chop	54
Commonly faced problems	56

Patients and Methods	59
Results	70
<u>Discussion</u>	95
Conclusion	115
<u>Summary</u>	116
References	117
Arabic Summary	

Abbreviations

BCVA	Best corrected visual acuity
BUVII	Best corrected visual dealty
BSS	Balanced salt solution
CCC	Continuous curvilinear capsulorhexis
CDC	Crater divide and conquer
EPT	Equivalent phaco time
ICCE	Intracapsular cataract extraction
IOL	Intaocular lens
MDC	Multidirectional divide and conquer
PCIOL	Posterior chamber intraocular lens
PMMA	Polymethyl methacrylate
PPS	Pulses per second
SIA	Surgically induced astigmatism
TDC	Trench divide and conquer
UCVA	Uncorrected visual acuity

List of Figures

Figure number	Title	Page
Figure 1	Comparison of the rise in vacuum in the peristaltic, diaphragm and venture pumps	8
Figure 2	Classification of phacoemulsification techniques	12
Figure 3	Crater divide and conquer technique	20
Figure 4	Trench divide and conquer technique	23
Figure 5	Phaco sweep technique	24
Figure 6	Four quadrants nucleofracture	26
Figure 7	Chip and flip phacoemulsification	29
Figure 8	Crack and Flip phacoemulsification	31
Figure 9	Phaco chop	32
Figure 10	Stop and Chop technique	36
Figure 11	Short groove nucleofractis	38
Figure 12	Phaco slice and Separate	41
Figure 13	Prechopping phacoemulsification	44
Figure 14	Phaco flip emulsification of the nucleus from down under	47
Figure 15	Vertical phaco chop ("phaco quick chop")	58
Figure 16	Quick chop phacoemulsification	58
Figure 17	Quick chop: Hydrodelineation; Golden ring sign	62
Figure 18	Quick chop: Embedding the bevel down phaco tip into the nucleus	63
Figure 19	Quick chop: Placement of the Neuhann chopper	64
Figure 20	Quick chop: Countertraction between the phaco tip and the Neuhann chopper	64
Figure 21	Quick chop: Chopping the nucleus into two halves	65

Figure number	Title	Page
Figure 22	Quick chop: Chopping each half of the	66
	nucleus	
Figure 23	Quick chop: Emulsification of nuclear fragments	66
Figure 24	Preoperative specular microscopy for case 14 in group A	77
Figure 25	Postoperative specular microscopy after 3 months for case 14 in group A	77
Figure 26	Preoperative specular microscopy for case 1 in group B	77
Figure 27	Postoperative specular microscopy after 3 months for case 1 in group B	77
Figure 28	Preoperative corneal topography for case 28 in group A	86
Figure 29	Postoperative corneal topography after 3 months for case 28 in group A	86
Figure 30	Preoperative corneal topography for case 9 in group B	86
Figure 31	Postoperative corneal topography after 3 months for case 9 in group B	86

List of Tables

Table number	Title	Page
Table 1	Sex Distribution in Groups A and B.	70
Table 2	Grade of nuclear hardness in Groups A & B.	71
Table 3	Mean equivalent phaco time (EPT) and total energy in both groups.	73
Table 4	Mean Endothelial Cell Count in Both Groups	76
Table 5	Mean Corneal Thickness in Both Groups Preoperative & Postoperative	78
Table 6	Relation between grade of nuclear hardness, phaco time, total energy, endothelial cell count and postoperative endothelial cell loss in both groups:	79
Table 7	BCVA (preoperative and postoperative) in both groups.	83
Table 8	Mean preopeative, postoperative, and surgically induced astigmatism (SIA) in both groups	85
Table 9	Comparison of the different evaluation parameters between the two groups	87
Table 10	Group A; results	91
Table 11	Group B; results	93

List of Charts

Chart number	Title	Page
Chart 1	Sex distribution in groups A and B	71
Chart 2	Grades of nuclear hardness in Group A.	72
Chart 3	Grades of nuclear hardness in Group B	72
Chart 4	The mean equivalent ultrasound time in groups A and B	73
Chart 5	The mean total energy in Groups A and B	74
Chart 6	The mean endothelial cell count (cells/mm ²) in groups A and B.	75
Chart 7	The mean endothelial cell loss in groups A and B.	76
Chart 8	The mean percentage endothelial cell loss in groups A and B.	76
Chart 9	The mean equivalent ultrasound time with different grades of nuclear hardness in both groups.	80
Chart 10	The mean total energy with different grades of nuclear hardness in both groups	81
Chart 11	The mean endothelial cell loss 3 months postoperative with different grades of nuclear hardness in both groups.	82
Chart 12	The mean preoperative, postoperative and surgically induced topographic corneal astigmatism(SIA) in both groups	85
Chart 13	Percentage of cases with posterior capsular rent in both groups	90

Chart number	Title	Page
Chart 14	Percentage of cases with posterior capsular rent in each nuclear grade for both groups	90
Chart 15	Relation between changes in endothelial cell count in the two groups	102
Chart 16	Relation between cell loss with total energy rise in the two groups	104

Introduction 1

INTRODUCTION

Since its introduction by Kelman in 1967, phacoemulsification undergoes continuous evolution in different aspects. Reduction of the ultrasound energy used inside the eye has always been the main goal for investigators and one of the most important aspects in phacoemulsification development. The reduction in ultrasound energy used inside the eye protects the corneal endothelial cells and avoids too much heat production inside the eye with all its hazards.

In the last decade, energy reduction was achieved with the modification in phacoemulsification technology and techniques. Continuous upgrading of the fluidics of phaco machines have enabled the safe use of high vacuum and flow rate levels by minimizing the risk of surge and maintaining anterior chamber stability. Power modulations and the popularity of the pulse and burst modes in modern phaco machines have also added to energy reduction. Alternatively, modifications have been made to phacoemulsification techniques by shifting from sculpting to phaco chopping and eventually to techniques that utilize higher levels of vacuum for lens disassembly and safe removal.

One of the techniques developed to reduce phaco energy utilized inside the eye was the 'quick chop' phacoemulsification which is essentially a vertical phaco chop technique. This technique distinguishes itself by bypassing initial sculpting and utilizing high vacuum to start vertical chopping directly from the central parts of the nucleus after its engagement by short bursts of pulsed phaco energy. Using a beveled down phaco tip allows better holdability and occlusion by the nuclear

Introduction 2

fragments and protects the corneal endothelium from the hazardous ultrasonic energy.

Aim of the work:

The objective of this study is to evaluate the 'bevel down quick-chop' phacoemulsification technique and to compare it to the 'stop and chop' technique in terms of the equivalent phaco time and total energy consumption, the effect on the corneal endothelium, efficiency in different grades of nuclear hardness, the effect on corneal wound burn and surgically induced astigmatism, intraoperative difficulties and complications and advantages.

EVOLUTION OF PHACOEMULSIFICATION

During the 1960s and in the early 1970s, most cataract surgeries were performed by the intracapsular cataract extraction technique (I.C.C.E.) where a 180 degree incision was made, a large sector iridectomy was performed and then the lens was grasped by a capsule forceps and the entire lens was pulled from the eye, eight or more sutures were used to close the incision, and the patient remained hospitalized for about 7 days. During the early postoperative period, most of the operated upon eyes were red; the lids were swollen and irritated for up to six weeks (*Paton and Ryan*, 1973).

The origins of phacoemulsification can be traced to the pioneering efforts of *Kelman*, *1967*, who described a single instrument technique for cataract extraction using ultrasound vibration to remove lens material through a 3-mm corneoscleral incision. To minimize posterior capsule tears and dropped nuclei, the nucleus was prolapsed into the anterior chamber and subsequently emulsified.

Specular microscopy studies have shown that anterior chamber phacoemulsification, prior to the introduction of viscoelastic agents, was associated with a significant reduction in endothelial cell counts (*Kraff et al.*,1980)

In 1972, Balazs introduced sodium hyaluronate as a replacement of vitreous and aqueous humor. He introduced the term viscosurgery. Its first application in anterior segment surgery was in 1977 as a surgical aid to maintain anterior chamber in rabbits. The use of these material has become common place in anterior segment surgery. They facilitated the transition from intracapsular to extracapsular surgery and later to phacoemulsification (*Balazs*, 1993).

However, between 1973 and 1979, the results of thousands of Kelman phacoemulsification cases performed by numerous surgeons showed several factors that limited the universal application of Kelman phacoemulsification as the procedure of choice for cataract extraction (*Gimbel*, 1995).

First, a number of reports were published showing damage to the corneal endothelium using the technique. Second was the realization that the very dense brunescent nucleus resisted ultrasonic fragmentation, making many cases difficult, dangerous, or impossible to accomplish with the instruments available. Finally, the shape of intraocular implants of the day required an incision substantially larger than 3 mm, potentially discounting any advantage of a smaller wound to remove the cataract. Nonetheless, Kelman had set the stage for further refinement of his ingenious invention (*Gimbel*, 1995). Eventually, the use of ultrasound to emulsify the lens nucleus did not gain wide acceptance until improvements in instruments provided the surgeon with control over phaco power and fluids. It was only toward the mid-1980s that there was an increase in interest for using phacoemulsification in cataract surgery (*Buratto*, 1998).