Relation Between Fatty Liver And Lipid Profile In Infants With Protein Energy Malnutrition

Thesis
Submitted for partial fulfillment of Master Degree
in pediatrics
Presented By

Mohamed Ahmed Fouad Hafez

M.B., B.ch

Supervision By

Prof. Dr. Nancy Abd El-Aziz Soliman

Professor of pediatrics.
Faculty of Medicine –Ain Shams University

Dr. Ehab Khairy Emam

Assistant Professor of pediatrics Faculty of Medicine –Ain Shams University

Dr. Dina Adel Fouad

Assistant Professor of clinical pathology Faculty of Medicine –Ain Shams University

> Faculty of Medicine Ain Shams University 2006

Acknowledgment

At first and for most thanks to "ALLAH" who gives me the power to finish this work.

I find no words by which I can express my deepest thanks to Prof. Dr. Nancy Abd El-Aziz Soliman, Professor of pediatrics, Faculty of Medicine, Ain Shams University for the continuous kind encouragement, guidance and support; she gave me throughout the whole work. It has been an honor to work under her generous supervision.

Also, I would like to express deepest thanks to Dr. Ehab Khairy Emam, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University for his support, guidance, supervision and unlimited help to produce this work.

Also, I wish to express my deepest thanks to Dr. Dina Adel Fouad, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her valuable supervision and cooperation through the whole work.

I am also deeply grateful to all patients, controls and their families for the great help offered throughout this study.

List of Contents

Title	Page
Introduction	1
Aim of the work	2
Review of Literature	3
Chapter 1: Protein energy malnutrition:	
■ Definition	3
■ Epidemiology	4
Classification of PEM	5
Pathogenesis	7
■ The Pathophysiology of PEM	9
Clinical aspects of PEM	19
History and physical examination	22
Laboratory tests	24
Management of severe PEM	26
 Prevention of PEM 	28
Prognosis of PEM	29
Mortality in PEM	30
Chapter 2: Lipid metabolism:	
Basic biochemistry	31
Classification of lipids	31
Cholesterol	32
Glycerol esters (Acylglycerols)	34

 Lipoproteins 	36
Apolipoproteins	44
Reference lipid, lipoprotein cholesterol,	and
apolipoprotein levels	49
Chapter 3: Lipid profile in PEM:	
Cholesterol in PEM	50
Triglycerides in PEM	50
Lipoproteins in PEM	51
Apolipoproteins in PEM	52
Chapter 4: Fatty liver disease in children with PEM	•
Pathogenesis	54
Clinical picture	56
Histology	57
Diagnosis	58
Prognosis	61
Subjects and methods	62
Results	73
Discussion	106
Summary	118
Conclusions	123
Recommendations	124
References	125
Arabic summary	

List of Figures

F1	g. No. Title	Page No.
1.	Marasmic infant	21
2.	Kwashiorkor in a 2 years old boy.	22
3.	Cholesterol structure	33
4.	Triglyceride structure	35
5.	General roles of lipoproteins	38
6.	Cross-sectional computed tomography (CT) of	the
	abdomen for measurement of attenuation values	60
7.	Z score of weight for height in all patients and contr	ols 74
8.	Z score of weight for height in marasmic, KWO	and
	marasmic-KWO patients	81
9.	Serum levels of triglycerides and cholesterol in	all
	patients and controls	83
10.	Serum levels of HDL, LDL, VLDL in all patients	and
	controls	83
11.	Serum levels of Apo A_1 and Apo B in all patients	and
	controls	84

12. Liver to spleen attenuation ratio in all patients and	
controls	84
13. Serum levels of triglycerides and cholesterol in	
marasmic, KWO and marasmic-KWO patients	91
14. Serum levels of HDL, LDL and VLDL in marasmic,	
KWO and marasmic-KWO patients.	91
15. Serum levels of Apo A ₁ and Apo B in marasmic, KWO	
and marasmic-KWO patients	92
16. Liver to spleen attenuation ratio in marasmic, KWO and	
marasmic-KWO patients	92

List of Table

Та	ole. No. Title	Page No.
1.	New classification of acute PEM	7
2.	Checklist of points for taking the child's medic	eal
	history and conducting the physical examination	23
3.	Laboratory tests of PEM	25
4.	Time frame for the management of a child with seve	ere
	malnutrition	27
5.	Criteria for discharge of the child from the hospital	28
6.	Approximate composition of the major lipoproteins	37
7.	General roles of lipoproteins	37
8.	Apoproteins of human plasma lipoproteins	45
9.	Differential diagnosis of fatty liver	58
10	Comparison between all PEM patients and com-	trols
	regarding the clinical data	73
11	Comparison between kwashiorkor and marasmic pati	ents
	regarding the clinical data	75
12	Comparison between kwashiorkor and maras	smic
	kwashiorkor patients regarding the clinical data	76
13	Comparison between marasmic and marasmic kwashio	rkor
	patients regarding the clinical data	77
14	Comparison between kwashiorkor patients and com-	trols
	regarding the clinical data	78
15	Comparison between marasmic patients and com-	trols
	regarding the clinical data	79

16.	Comparison between marasmic kwashiorkor patients and	
	controls regarding the clinical data	80
17.	Comparison between all PEM patients and controls	
	regarding the lipid profile and liver to spleen attenuation	
	ratio	82
18.	Comparison between kwashiorkor and marasmic patients	
	regarding the lipid profile and liver to spleen attenuation	
	ratio	85
19.	Comparison between kwashiorkor and marasmic	
	kwashiorkor patients regarding the lipid profile and liver to	
	spleen attenuation ratio	86
20.	Comparison between marasmic and marasmic kwashiorkor	
	patients regarding the lipid profile and liver to spleen	
	attenuation ratio	87
21.	Comparison between kwashiorkor patients and controls	
	regarding the lipid profile and liver to spleen attenuation	
	ratio	88
22.	Comparison between marasmic patients and controls	
	regarding the lipid profile and liver to spleen attenuation	
	ratio	89
23.	Comparison between marasmic kwashiorkor patients and	
	controls regarding the lipid profile and liver to spleen	
	attenuation ratio	90
24.	Comparison between all PEM patients and controls	
	regarding the laboratory data	93
25.	Comparison between kwashiorkor and marasmic patients	
	regarding the laboratory data	94

26.	Comparison between kwashiorkor and marasmic	
	kwashiorkor patients regarding the laboratory data	95
27.	Comparison between marasmic and marasmic kwashiorkor	
	patients regarding the laboratory data	96
28.	Comparison between kwashiorkor patients and controls	
	regarding the laboratory data	97
29.	Comparison between marasmic patients and controls	
	regarding the laboratory data	98
30.	Comparison between marasmic kwashiorkor patients and	
	controls regarding the laboratory data	99
31.	The mean values of lipid profile and liver to spleen	
	attenuation ratio among males and females	100
32.	The mean values of lipid profile and liver to spleen	
	attenuation ratio in patients with gastroenteritis and those	
	without	101
33.	The mean values of lipid profile and liver to spleen	
	attenuation ratio in patients with intestinal parasitic	
	infestation and those without	102
34.	The mean values of lipid profile and liver to spleen	
	attenuation ratio in patients with oral moniliasis and those	
	without	103
35.	Correlation matrix of some studied parameters in all PEM	
	nationts	104

List of abbreviations

	Biol of acoloviations
%	Percent
+ve	Positive
ALP	Alkaline phosphatase
ALT	Alanine aminotransferase
Apo	Apolipoprotein
AST	Aspartate aminotransferase
ATP	Adenosine Tri-phosphate
C	Cholesterol
CBC	Complete blood count
CE	Cholesterol esterase
CHD	Coronary heart disease
Cm	Centimeter
CO	Cholesterol oxidase
CT	Computerized tomography
dl	Deciliter
FFA	Free fatty acids
G-1-PDH	Glycerol-1-phosphate dehydrogenase
GGT	Gamma glutamyl transferase
GH	Growth hormone
GHBP	Growth hormone binding proteins
GK	Glycerol kinase
gm	Gram
GSH	Glutathione
НВ	Hemoglobin
HDL	High density lipoproteins
HU	Housfield unit
IDL	Intermediate density lipoprotein
	111

IGF-1 Insulin like growth factor-1
IU International unit
KgKilogram
KWO Kwashiorkor
LLiter
L/SLiver to spleen
LCATLecithin cholesterol acyl transferase
LDLLow density lipoproteins
LpLipoprotein
MMarasmus
M. KWO Marasmic kwashiorkor
MgMilligram
ml Milliliter
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
nmNanometer
PSignificance
PEMProtein energy malnutrition.
rCoefficiency of correlation
ROIRegions of interest
SDStandard deviation
TGTriglycerides
TLC Total leucocytic count
TPTotal protein
-veNegative
VLDLVery low density lipoproteins

Introduction and Aim of the Work

Introduction

Protein energy malnutrition is a pathological state resulting from insufficient intake of energy and other nutrients (*Ge and Chang, 2001*). Malnutrition remains one of the most common causes of morbidity and mortality among infants and children throughout the world (*WHO, 1999*).

The lipid composition of plasma including total HDL, LDL cholesterol, triglycerides, apo A, and apo B. Severely malnourished children showed a significant reduction of serum levels of VLDL, IDL, LDL and HDL before treatment than during and after treatment (*Dhansay et al.*, 1991).

Fatty infiltration of the liver is one of the cardinal features of severe childhood malnutrition. It found to be enormously increased, approaching 50% of total liver weight in the most severe cases (*Doherty et al.*, 1991). It is associated with increased morbidity and mortality in children with severe PEM, but its pathogenesis remains unclear (*Badaloo et al.*, 2005).

Aim of the work

The aim of this study is to estimate the degree of fatty infiltration of the liver in PEM patients by liver to spleen attenuation ratio in abdominal CT and to correlate this ratio to their lipid profile and some clinical findings.

Review of Literature