UMBILICAL CORD SERUM AND MATERNAL SERUM INSULIN LIKE GROWTH FACTOR I IN UNCOMPLICATED PREGNANCY AND IN PREGNANCY COMPLICATED BY PREECLAMPSIA

Thesis
Submitted for Partial Fulfillment of
Master Degree in Obstetrics and Gynaecology

BY

Huda Ragab Awaad

M.B., B.Ch, 1998 (Ain Shams University)

Supervised by

Prof. Essam El-Din Mohamad Ammar

Professor of Obstetrics & Gynaecology Faculty of Medicine - Ain Shams University

Prof. Adel Gamal El-Missiry

Technical Director of Medical Research Centre Professor of Parasitology Faculty of Medicine - Ain Shams University

Dr. Mohamad Taha Ismail Mahmoud

Lecturer of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2007

نسبة عامل النمو (١) الشبية بالأنسولين في مصل الحبل السرى ومصل الأمهات في الحمل الطبيعي وحمل ما قبل التشنج الحملي

رسالة توطئة للحصول على درجة الماجستير في أمراض النساء والتوليد مقدمة من الطبيبة/ هدى رجب عواد بكالوريوس الطب والجراحة - ١٩٩٨ (جامعة عين شمس)

تحت إشراف

الأستاذ الدكتور/ عصام الدين محمد عمّار

أستاذ أمراض النساء والتوليد كلية الطب - جامعة عين شمس

الأستاذ الدكتور/ عادل جمال المسيرى

المدير الفنى لمركز البحوث الطبية وأستاذ علم الطفيليات - كلية الطب - جامعة عين شمس

الدكتور/ محمد طه إسماعيل محمود

مدرس أمراض النساء والتوليد كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠٠٧

ACKNOWLEDGEMENTS

First and for most thanks are to **ALLAH** to whom any success in life is attributed.

I wish to express my deepest gratitude to **Prof. Dr. Essam El-Din Mohamad Ammar;** Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University for his faithful supervision, precious help and constant guidance.

My deepest thanks to **Prof. Dr Adel Gamal El-Missiry**, Technical Director of Medical Research Centre and Professor of Parasitology, Faculty of Medicine, Ain Shams University for the great help he offered me to complete this work.

I would like to express my appreciation to **Dr. Mohamad Taha Ismail Mahmoud,** Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University for the great help he offered me.

I would like to express my appreciation to **Dr. Mohamad Mahmoud El Sherbiny,** Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University for the great help he offered me.

Finally, I wish to thank all who helped me to complete this work.

Huda Ragab Awaad

Contents

NTRODUCTION
IM OF THE WORK
EVIEW OF LITERATURE:
• Preeclampsia:
- Definitions
o EPH-gestosis
 Superimposed EPH-gestosis or eclampsia
o Hypertension
Gestational hypertension
o Chronic hypertension
o Proteinuria
Gestational edema
o Eclampsia
- Classification of hypertensive disorders complicating
pregnancy
A. Pregnancy induced hypertension
B. Coincidental hypertension
C. Pregnancy-aggravated hypertension
D. Transient hypertension
- Maternal and perinatal outcome.
- Epidemiology and risk factors
Maternal age and Paternal factor
ParityMaternal weight and insulin resistance
Maternal or pregnancy-related risk factors
Pre-existing thrombophilia
Socioeconomically
Climate and seasons
Smoking
Hyperplacentosis
- Pathogenesis of Pre-eclampsia
Abnormal placental development
Systemic Endothelial Dysfunction
Circulating Angiogenic Factors
o Genes, the genetic-conflict hypothesis, and geneti
imprinting
1 0

- Pathophysiological changes of pre-eclampsia	
Y-Fetal Y-Maternal	
A. Haemodynamic changes B. Changes in intravascular volume	
<u>e</u>	
C. Cardiac changes	
D. Renal changes	
E. Liver changesF. Central nervous system	
· · · · · · · · · · · · · · · · · · ·	
G. Placental changes H. Retinal (Fundus) changes	
I. Pancreatic changes	
J. Lung changes	
- Diagnosis of pre-eclampsia	
- Prediction of pre-eclampsia	
A. Clinical assessment	
B. Urine tests	
C. Maternal Serum Markers	
Insulin-like growth factors	
- Historical background	
- Site of synthesis and production of IGFs	
Structure and molecular biology of IGFs	
- Insulin like growth factors binding proteins	
\- IGFBP-1	
Y- IGFBP-2	
۳- IGFBP-3	
٤- IGFBP-4	
°- IGFBP-5	
7- IGFBP-6	
- IGF-IGFBP complex	
Physiological significance of IGFBPs	
Biological actions of IGFs	
I- Rapid Effects	
(1) Glucose Homeostasis	
(Y) Adipose tissue and isolated fat cells	
(٣) Cartilage	
(£) Bone	
(°) Heart and skeletal muscles	
· ·	

	Page
II- Longterm Effects	65
(1) Mitogenic Activity	65
(Y) Incorporation of sulphate into the proteoglycan	
molecules of cartilage	66
- Factors affecting and regulating IGFs	68
- Therapeutic uses of IGF-I	70
• Fetal growth	
- Regulation of fetal growth	72
A. Extrinsic nutrient supply	72
B. Intrinsic growth factors	73
C. Role of the placenta in fetal growth	74
- Normal intrauterine growth pattern	75
- Abnormal intrauterine growth pattern	76
a. IUGR	76
b. Fetal macrosomia	81
c. Fetal growth in pre-eclampsia	82
SUBJECTS AND METHODS	85
RESULTS	91
DISCUSSION	114
CONCLUSION	121
RECOMMENDATIONS	122
SUMMARY	123
REFERENCES	127
ARABIC SUMMARY	

List of Tables

Table No.	Title
1	Pregnancy induced hypertension indications of severity
2	Maternal and fetal complications in severe pre-
	eclampsia
3	Risk factors for pre-eclampsia
4	Potential IGF therapies
5	Comparison between Group I (cases) and Group II (controls) as regards maternal age, gestational age,
	parity and fetal gender
6	Comparison between Group I (cases) and Group II
_	(controls) as regards mode of delivery
7	Comparison between Group I (cases) and Group II (controls) as regards cause of termination
8	Description of fetal anthropometric measures, APGAR
•	score and placental weight among Group I (cases)
9	Description of fetal and maternal IGF-I among Group I
40	cases) (No.=60)
10	Description of fetal anthropometric measures, APGAR
11	score and placental weight among Group II (controls)
11	Description of fetal and maternal IGF-I among Group II (controls)
12	Description of fetal and maternal IGF-I among Group Ia
12	severe preeclampsia cases) (No.=46)
13	Description of fetal and maternal IGFI among Group Ib
10	(mild preeclampsia cases) (No.=14)
14	Comparison between Group I (cases) versus Group II
• •	(controls) as regards fetal anthropometric measures,
	APGAR score and placental weight
15	Comparison between Group Ia (severe preeclampsia)
	versus Group Ib (mild) as regards fetal and maternal
	IGFI
16	Comparison between Group Ia and Group II as regards
-	fetal and maternal IGF-I
17	Comparison between Group Ib and Group II as regards
	fetal and maternal IGF-I
	Continued

Table No.	Title	Page
18	Comparison between Group I and Group II as regards	
	fetal and maternal IGF-I	103
19	Comparison between Group Ia, Group Ib, and Group II	
	as regards fetal and maternal IGF-I	104
20	Correlation between fetal IGF-I and fetal weight and	
	height among Group I (cases)	106
21	Correlation between maternal IGF-I and fetal weight	
	and length among Group I	107
22	Correlation between maternal IGF-I and fetal IGF-I	
	among Group I	108
23	Correlation between maternal IGF-I and fetal IGF-I	
	versus other variables among Group I	109
24	Relation between maternal IGF-I and fetal IGF-I versus	
	mode of delivery	110
25	Comparison between maternal IGF-I and fetal IGF-I	
	versus fetal gender	111
26	Sensitivity, specificity, PPV and NPV of fetal IGF-I in	
	prediction of fetal weight among Group I using 90	
	ng/ml as the best cut off value	112
27	Sensitivity, specificity, PPV and NPV of maternal IGF-I	
	in prediction of fetal weight among Group I using 280	
	ng/ml as the best cut off value	113

List of Figures

Fig. No.	Title	Page					
1	Abnormal placentation in pre-eclampsia. In normal placental development, invasive cytotrophoblasts of fetal origin invade the maternal spiral arteries, transforming them from small-caliber capacitance vessels capable of providing placental perfusion						
_	adequate to sustain the growing fetus	21					
2	Summary of pathogenesis of pre-eclampsia	24					
3							
	their preprohormones	54					
4	Structure of human IGF-I, IGF-II, and insulin (ins),						
E	using the one-letter codes for amino acid residues	55					
5	Insulin, IGF-I, IGF-II receptors. Each hormone binds primiraly to its own receptors, but insulin also binds to the IGF-I receptor, and IGF-I and IGF-II bind to all						
	three	61					
6	Comparison between Group I and Group II as regards gestational age, parity, and maternal age	93					
7	Comparison between Group I (cases) and Group II (controls) as regards mode of delivery	94					
8	Comparison between Group I (cases) and Group II (controls) as regards cause of termination	95					
9	Comparison between Group I and Group II as regards fetal length, APGAR 1 min. and APGAR 5 min	99					
10	Comparison between Group I and Group II as regards						
. •	fetal birth weight, and placental weight	99					
11	Comparison between Group Ia and Group Ib as regards fetal IGF-I and maternal IGF-I	100					
12	Comparison between Group Ia and Group II as regards						
	fetal IGF-I and maternal IGF-I	101					
13	Comparison between Group Ib and Group II as regards fetal IGF-I and maternal IGF-I	102					
14	Comparison between Group I and Group II as regards						
	fetal IGF-I and maternal IGF-I	103					
15	Description of fetal IGF-I and Maternal IGF-I among						
	Group Ia, Group Ib, and Group II	105					
	Continued						

Title	Page
Correlation between fetal IGF-I and fetal wt among	
Group I (preeclampsia cases)	106
Correlation between maternal IGF-I and fetal wt among	
Group I (preeclampsia cases)	107
Correlation between maternal and fetal IGF-I among	
Group I (preeclampsia cases)	108
Comparison between maternal IGF-I and fetal IGF-I	
as regards mode of delivery	110
Comparison between fetal gender and fetal IGF-I and	
maternal IGF-I	111
ROC curve (Receiver operator characteristic curve) for	
fetal IGF-I to find out the best cut off value and the	
overall predictivity represented by area under the curve	
which is 70% and the best cut of value=90	112
ROC curve for maternal IGF-I to find out the best cut	
off value and the overall predictivity represented by area	
under the curve which is 60% and the best cut of	
value=280	113
	Correlation between fetal IGF-I and fetal wt among Group I (preeclampsia cases)

List of Abbreviations

ALS..... Acid Labile Subunit

APGAR 1 min..... APGAR Scoring After 1 Minute (Appearance,

Pulse, Grimace, Activity, and Respiration)

APGAR 5 min..... APGAR Scoring After 5 Minutes

EPH-gestosis...... Edema, Proteinuria and Hypertension

FL.... Femur Length
Fn... Fibronectin

HC..... Head Circumference

hCG...... Human Chorionic Gonadotrophin

IGFBPs..... Insulin-Like Growth Factors Binding Proteins

IL-6..... Interleukin-6

IUGR..... Intrauterine Growth Retardation

KD..... Kilo Dalton

MSA...... Multiplication Stimulating Activity
MSAFP...... Maternal Serum A-Fetoprotein

M W..... Molecular Weight NKB..... Neurokinin B

NSILA...... Non-Suppressible Insulin Like Activities

ng /ml..... Nanogram/Ml

OGTT..... Oral Glucose Tolerance Test

PIH..... Pregnancy Induced Hypertension

PlGF..... Placental Growth Factor

Roc curve....... Receiver Operator Characteristic Curve

Continued

bi iti Boildoid iiiib Elike i jiobilie iiiilabe	sFlt1	Soluble	fms-Lik	ce Tyr	osine	Kinase
---	-------	---------	---------	--------	-------	--------

SGA...... Small for Gestational Age SBP..... Systolic Blood Pressure

SHBG..... Sex Hormone Binding Globulin

TNF-α..... Tumor Necrosis Factor-Alpha

 TxA_2 Thromboxane

VEGF..... Vascular Endothelial Growth Factor

ntroduction

INTRODUCTION

Preeclampsia is a disorder that is believed to affect to some degree 1 in 10 of all pregnancies. It is the commonest single cause of maternal and fetal mortality, and currently there is no cure other than termination of the pregnancy (*Roberts and Redman, 1993*). The causes of preeclampsia are complex and not fully understood, but the condition may be associated with poor placentation (*Brosens et al., 1972*).

It is assumed that poor placentation and the associated obstructive lesion of the spiral arteries called acute atherosis, lead to placental ischemia (*Redman and Sargent, 2000*). It is possible that preeclampsia causes placental ischemia, although it is more likely that placental ischemia causes preeclampsia especially because poor placentation is an early preclinical development (*Combs et al., 1993*).

It is presumed that blood born agents arising from the ischemic placenta are the cause of the generalized endothelial cell damage that gives rise to the preeclampsia syndrome (Roberts et al., 1989).

Preeclampsia is characterized by hypertension, proteinuria and edema which remits after delivery (*Dekker and Sibai*, 1991). Many lines of evidence point to an important role for the insulin-like growth factors (IGFs) in embryonic and fetal growth in human pregnancy (*Jones and Clemmons*, 1995) and during preeclampsia maternal serum IGF-l concentrations are lower than those in normal pregnant women (*Halhali et al.*, 1995 & Giudice et al., 1997). The actions of IGFs are modulated by a series of at least six high affinity-

binding proteins, named as IGF binding proteins that are ubiquitously expressed. The role of these IGFBPs in IGF action is not clear, but it has been demonstrated that these proteins may enhance or inhibit IGF-cellular effects (*Rosenfeld et al.*, 1999). In the circulation, IGFBP-3 is the major carrier protein for IGF-I and IGF-II; approximately 95% of IGF-I is bound to IGFBP-3 (*Binoux and Hossenlopp*, 1988). In a study done by *Wang et al.* (1996) decreased serum IGFBP-3 levels were observed in preeclamptic women, but in another study, this protein was not significantly decreased in preeclamptic patients (*Giudice et al.*, 1997; *Varma et al.*, 1993).

In normal pregnancy, maternal serum levels of IGF-I decrease early but increase again from gestational week 22 onward. Maternal IGF-I is believed to originate mainly from the maternal liver, and human growth hormone has been suggested to be a main stimulator of its synthesis (*Wang et al., 1996*). Preeclampsia is also associated with reduced utero--placental blood flow and fetal intrauterine growth retardation (*National High Blood Pressure Education program working group, 1990; Redman, 1991*). Insulin-like growth factor-I (IGF-I) may be involved in both normal and abnormal fetal growth (*Chard, 1994*).

Under physiological conditions, approximately 75% of IGF-I circulate as a high molecular mass (150-kDa) ternay complex formed by IGF-I, IGFBP-3 and an acid-labile subunit; 24% is bound to other IGFBPs, and the remaining 1% circulates as free IGF-I (*Rajaram et al.*, 1997).