Role of Adipose Derived Stem Cells in Skin Flap Survival in a Rat Model

(Experimental Study)

Thesis

Submitted for partial fulfillment of M.D. Degree In Plastic and Reconstructive Surgery

Ahmed Atef Mohamed Ahmed M.B.B.Ch., M.Sc.

Under supervision of

Prof Ayman Abu El Makarem Shaker

Professor of Plastic and Reconstructive Surgery Faculty of Medicine - Ain Shams University

Prof Suzi Sobhy Atalla

Professor of Histology Faculty of Medicine - Ain Shams University

Dr Eman Mohammed Yahya Sadek

Associate Professor of Plastic and Reconstructive Surgery Faculty of Medicine - Ain Shams University

Dr Nahed Samir Boughdadi

Associate Professor of Plastic and Reconstructive Surgery Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain shams university 2016

بسم الله الرحمن الرحيم

(هَالُواْ سُبِهَانَكَ لا عِلْمَ لَذَا إلا مَا عَلَمَةَذَا إِنَّكَ الْعَلِيمُ الْمَاعِلَمُ الْمَاعِلِيمُ الْمَكِيمُ)

صدق الله العظيم (سورة البهرة – أية ٣٢)

Acknowledgement

Praise to "ALLAH", The Most Gracious, The Most Merciful, for helping me to complete this work.

I would like to express my deepest thanks, gratitude and appreciation to **Prof Ayman Abu El Makarem Shaker** Professor of Plastic and Reconstructive Surgery, Ain Shams University, for his generous support, encouragement, helpful suggestions and continuous supervision throughout the research, and for his precious time and effort that made this work possible.

I would like to express my deepest gratitude to **Prof Suzi Sobhy Atalla**, Professor of Histology, Ain Shams University, for her support, close supervision and valuable guidance.

I would like to express my deepest gratitude to **Dr Eman Mohammed Yahya Sadek**, Associate Professor of Plastic and Reconstructive Surgery Ain Shams University, for her continous encouragement, meticulous supervision of this work and valuable guidance.

I would like to express my gratefulness to **Dr Nahed Samir Boughdadi**, Associate Professor of Plastic and Reconstructive Surgery Ain Shams University, for her sincere advice, generous help and guidance throughout this work.

I would like to extend my sincere gratitude to **Dr. Fatma Abo**Zahra and **Dr. Ahmed Abdallah** who helped me through my experimental work.

Last but not least, I would like to express my thanks and gratitude to my parents, my dear wife and my son HAMZA for their support and encouragement.

Contents

		<u>Page</u>
•	List of Abbreviations	I
•	List of Figures	III
•	List of Tables	VII
•	Introduction	1
•	Aim of the Work	4
•	Review of literature	
	➤ Skin Flap Physiology	5
	> Enhancement of Skin Flap Viability	23
	> Adipose Derived Stem Cells	31
•	Material and Methods	48
•	Results	67
•	Discussion	82
•	Summary and Conclusion	91
•	References	93
	Arabic summary	<u> </u>

List of Abbreviations

Abbreviation	Description
Ang-1	Angiopoietin-1
ANOVA	Analysis of Variance
ASCs	Adipose Derived Stem Cells
AVAs	Arteriovenous Anastomoses
BC	Before Christ
bFGF	basic Fibroblast Growth Factor
BMP-2	Bone Morphogenetic Protein 2
CAL	Cell Assisted Lipotransfer
CD	Cluster of Differentiation
DMEM	Dulbecco's Modified Eagle Medium
ECM	Extracellular Matrix
ELISA	Enzyme-Linked Immunosorbent Assay
EPCs	Endothelial Progenitor Cells
ESCs	Embryonic Stem Cells
FBS	Fetal Bovine Serum
FITC	Fluorescein Isothiocyanate
H&E	Hematoxylin and Eosin
HGF	Hepatocyte Growth Factor
HIF-1	Hypoxia-Inducible Factor-1
HLA-DR	Human Leukocyte Antigen-antigen D related
HS	Highly Significant
IFATS	International Federation for Adipose Therapeutics and Science
IGF	Insulin Growth Factor
INF-γ	Interferon-γ

iPS	induced Pluripotent Stem cells
ISCT	International Society for Cellular Therapy
KGF	Keratinocyte Growth Factor
LSD	Least Significant Difference
MHC-II	Major Histocompatibilty Complex-Class II
MSCs	Mesenchymal Stem Cells
NGF	Nerve Growth Factor
NS	Non Significant
O.D	Optical Density
PBS	Phosphate Buffered Saline
PE	Phycoerythrin
PGE2	Prostaglandin E2
PLA	Processed Lipoaspirate
PDGF	Platelet-Derived Growth Factor
RPM	Revolution per minute
S	Significant
SD	Standard Deviation
SDF 1	Stromal Derived Factor 1
SPSS	Statistical Program For Social Science
SVF	Stromal Vascular Fraction
TGF β	Transforming Growth Factor Beta
TNF- α	Tumor Necrosis Factor- α
TRAM	Transverse Rectus Abdominis Myocutaneous
VEGF	Vascular Endothelial Growth Factor
VEGFR	Vascular Endothelial Growth Factor Receptor

List of Figures

No.	Title	Page
1.1	Sectional View of Skin & Subcutaneous.	6
1.2	The Cutaneous Circulation	10
1.3	Random Pattern Skin Flap	11
1.4	Fallacy Of Length-To-Width Ratio	12
1.5	Axial Pattern Skin Flap	13
1.6	Cutaneous Circulation in Loose Skinned Animals	14
1.7	Mechanisms Controlling Skin Microcirculation	17
1.8	Mechanisms of Neovascularization	18
1.9	Steps of Angiogenesis	20
1.10	Processes in Angiogenesis	20
2.1	Standard delay flap modification.	24
2.2	Diagrammatic representation of the same flap raised with and without a surgical delay to illustrate the necrosis line and the changes in the choke vessels	25
3.1	Induced pluripotent stem cells.	31
3.2	Embryonic stem cells	32
3.3	Components of stem cell niche	34

3.4	ASCs niche	37
3.5	ASCs isolation and utilization	40
3.6	Mechanism of wound healing by ASCs	46
4.1	Rat in dorsal recumbent position	49
4.2	Inguinal crease incision	49
4.3	Dissected inguinal fat pad	50
4.4	Harvested inguinal fat pad	50
4.5	The Laminar flow cabinet (NUAIRE, Class II Type A/B3)	51
4.6	Minced fat in petri dish	51
4.7	Fat digestion by collagenase	52
4.8	Homogenous digested fat	52
4.9	The arrow pointing to the resultant cell pellet	53
4.10	Complete Culture medium	54
4.11	Incubated culture flasks	54
4.12	A: Inverted microscope (Axiovert 100, Zeiss B: Culture flask examination with inverted microscope	55
4.13	Beckman Coutler: Navios Flow Cytometer	57

4.14	Rat positioning in a prone position	58
4.15	Caudally based random pattern rectangular skin flap marking	58
4.16	A & B: Skin flap elevation including the panniculus carnosus	59
4.17	The skin flap was sutured back to its original position	60
4.18	ASCs injection along the flap axis	61
4.19	A: Skin flap showing the viable and necrotic parts. B: Undersurface of skin flap showing the viable and necrotic parts	62
4.20	ImageJ Software Calibration by measuring 1 cm distance on the ruler that was transformed to pixels to read the actual length.	63
4.21	Measuring the surface area of the survived in cm ²	63
4.22	Cole-Parmer Ultrasonics Homogenizer, 4710 series	65
5.1	Day zero, photomicrograph of isolated cells, the cells appeared rounded in shape, floating and mobile (X 200).	67
5.2	Third day culture, photomicrograph of cultured ASCs, cells appeared spindle in shape with processes of different lengths(X 200)	68
5.3	On day six, photomicrograph of cultured ASCs.	68

5.4	On day nine, photomicrograph of cultured ASCs showed spindle shaped cells with granular cytoplasm (X 200)	69
5.5	A photomicrograph of cultured ASCs, complete confluent on the twelfth day, dense homogenous population(X 200)	69
5.6	Flow Cytometry histogram analysis showed that rat ASCs express CD44 & CD105	70
5.7	Box plot graph for comparison between studied groups as regard percentage of survival	72
5.8	Survival status of the flaps from the four groups [A, B, C & D] at 7th postoperative day	73
5.9	Comparison of the survival status of the flaps from the four groups [A, B, C & D] after flap separation.	74
5.10	Box plot graph comparing between studied groups as regard number of capillaries / field.	75
5.11	A photomicrograph of a section from rat skin flap of the control group (group D) on postoperative day 7, showing few number of subcutaneous capillaries (X 80)	76
5.12A	A photomicrograph of a section from rat skin flap of group A on postoperative day 7, showing large number of capillaries (X100)	77
5.12B	A photomicrograph of a section from rat skin flap of group A on postoperative day 7, showing large number of subcutaneous capillaries with flat endothelial lining (X640)	77

5.13A	A photomicrograph of a section from rat skin flap on postoperative day 7 of group B, showing plenty of subcutaneous capillaries (X100)	78
5.13B	A photomicrograph of a section from rat skin flap on postoperative day 7 of group B, showing plenty of subcutaneous capillaries with flat endothelial lining (X640)	78
5.14A	A photomicrograph of a section from rat skin flap on postoperative day 7 of group C, showing few number of subcutaneous capillaries (X100)	79
5.14B	A photomicrograph of a section from rat skin flap on postoperative day 7 of group C, showing few number of subcutaneous capillaries (X640)	79
5.15	Box plot graph for comparison between studied groups as regard VEGF level (Pg/ml).	80

List of Tables

No.	Title	Page
1	Comparison between the studied groups as regard survival percentage.	71
2	Comparison of the studied groups as regard percentage of survival by post hoc test.	72
3	Comparison of the studied groups as regard number of capillaries/field	75
4	Comparison of the studied groups as regard number of capillaries by post hoc test	76
5	Comparison between the studied groups as regard VEGF level (Pg/ml)	80
6	Comparison between the studied groups as regard VEGF level by post hoc test	81

Introduction

Skin flaps are commonly used in plastic and reconstructive surgery to repair defects resulting from trauma, congenital anomalies, or after tumor resection. Partial necrosis of the flap can be encountered postoperatively as a result of inadequate blood supply (Lu et al., 2008). Subsequent management of flap necrosis usually includes time-consuming and repetitive dressing changes aimed at promoting secondary intention healing or even secondary reconstructive procedures (Lubiatowski et al., 2002).

To overcome this potential problem, numerous studies have investigated methods for improving skin flap survival. Many have focused on enhancing flap viability with pharmacological agents as glucocorticoids and vasodilators to preserve the existing microcirculation. Although they are beneficial to some extent, the major drawback is the need for systemic application at relatively high doses to achieve significant improvement in flap survival, with increased possibilities of systemic side effects (**Kuru et al., 2003**; **Engel et al., 2007**).

The administration of growth factors such as the basic Fibroblast Growth Factor (bFGF) and Vascular Endothelium Growth Factor (VEGF) to stimulate angiogenesis in skin flaps seems promising (Haws et al., 2001; Pang et al., 2003; Qi et al., 2007). However, these growth factors have short half-life and so they need high initial doses and daily application (Meirer et al., 2005).

The angiogenesis potential of adult stem cells has been reported, especially with stem cells derived from bone marrow and adipose tissue (Planat-Benard et al., 2004; Tang et al., 2006; Uysal et al., 2010).

Stem cells are defined by their capacity to self-renew and differentiate into multiple cell lines; they are divided into two main groups: Embryonic stem cells and Adult stem cells (Behr et al., 2010).

Embryonic stem cells are pluripotent cells that can differentiate into any of the three primary germ layers. However, there are ethical concerns regarding the isolation of cells from live embryos. As a result, researchers have redirected attention to the adult stem cell populations as an alternative source (**Ko et al., 2011**).

Adult mesenchymal stem cells are multipotent cells that are capable of differentiating into mesenchymal lineages such as bone, cartilage, muscle, and fat. Mesenchymal stem cells can be isolated from various sites, including bone marrow and adipose tissue (**Ko et al., 2011**).

A set of standards were proposed by the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy to define human mesenchymal stem cells. First, cells must be plastic adherent when maintained in standard culture conditions. Second, they express specific surface antigens. Third, the cells are capable of differentiation into osteoblasts, adipocytes and chondroblasts in vitro (**Dominici et al., 2006**).

Adipose tissue represents an attractive source of mesenchymal stem cells, the interest in using Adipose-derived stem cells (ASCs) has rapidly grown especially among plastic surgeons. The isolation of adipose tissue is much easier than bone marrow, with less donor site morbidity and available in greater quantities (**Zhu et al., 2008**).

ASCs can promote angiogenesis by secreting angiogenic growth factors as VEGF and bFGF (Rehman et al., 2004), and differentiating into endothelial cells (Keerl et al., 2010), thus improving skin flap survival (Lu et al., 2008; Yang et al., 2010).

Few studies have investigated the role of ASCs in skin flap survival, there was no previous clinical application. Furthermore, no previous studies investigated the optimal time for ASCs administration in the skin flap.