EFFECT OF SOME SAFE BIOCIDES ENVIRONMENTALLY ON SENSITIVITY OF DIFFERENT STRAINS OF MEDITERRANEAN FRUIT FLY

Submitted By

Rasha Seleem Abou El Fotouh Abdel Aziz

B.Sc. of Agric. Sci. (Educational), Higher Institute for Agricultural Co-operation, 2002

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Agricultural Sciences Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET

ON SENSITIVITY OF DIFFERENT STRAINS OF MEDITERRANEAN FRUIT FLY

Submitted By

Rasha Seleem Abou El Fotouh Abdel Aziz

B.Sc. of Agric. Sci. (Educational), Higher Institute for Agricultural Co-operation, 2002

This thesis Towards a Master Degree in Environmental Sciences Has been Approved by:

Name

1-Prof. Dr. Kadry Weshahy Mahmoud

Prof. of Pesticides Chemistry and Toxicology Faculty of Agriculture

Ain Shams University

2-Prof.Dr. Nazmi Abdel-Hamid abdel Ghany

Prof. of Pomology and Dean of

Faculty of Agriculture

Ain Shams University

3-Prof. Dr. Laila Fouad Hagag

Chairman Emeritus Prof. Researcher of Horticulture

National Research Center

4-Prof. Dr. Sayed Mohamed Abdel Latif Dahroug S, H. Dahroug

Chairman Emeritus Prof. of Pesticides

Faculty of Agriculture

Ain Shams University

2015

ON SENSITIVITY OF DIFFERENT STRAINS OF MEDITERRANEAN FRUIT FLY

Submitted By

Rasha Seleem Abou El Fotouh Abdel Aziz

B.Sc. of Agric. Sci. (Educational), Higher Institute for Agricultural Co-operation, 2002

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Agricultural Sciences

Under The Supervision of:

1-Prof. Dr. Kadry Weshahy Mahmoud

Prof. of Pesticides Chemistry and Toxicology Faculty of Agriculture Ain Shams University

2-Prof .Dr. Nazmi Abdel-Hamid abdel Ghany

Prof. of Pomology and Head of Department of Horticulture Faculty of Agriculture Ain Shams University

3-Prof. Dr. Ahmed Mahmoud Zaki Mosallam

Prof. of Horticulture Insects Department Institute of Plant Protection Research Agricultural Research Center

4-Prof. Dr. Abdel-Fatah Gad Hashim (Died)

Chairman Emeritus Prof. Researcher of Plant Protection Institute of Plant Protection Research Agricultural Research Center

ACKNOWLEDGEMENT

First of all, I do thank **Allah** for the gifts he has given me.

Sincere thanks are due to **Prof. Dr. Kadry Weshahy Mahmoud** Professor of Pesticides and Toxicology, Faculty of Agriculture, Ain Shams University for giving me the honor to do this work under his supervision and I would like to express my deepest thanks and appreciation for his valuable scientific advice, guidance and criticizing the manuscript.

Deepest thanks and appreciation are extended to **Prof. Dr.**Nazmi Abd El-Hamid Dean of Faculty of Agriculture,
Professor of Pomology, Ain Shams University for his guidance,
continuous support and assistance during the phases of study as
well as her valuable scientific advice and criticizing the
manuscript.

There are no sufficient words to thank **Prof. Dr. A.M.Z. Mosallam** Head Researcher and Head of Horticulture Insects
Department, Plant Protection Research Institute, Agricultural
Research Center, Ministry of Agriculture and Land Reclaimation
for his keen revision of this manuscript, non-ending support and
precious time. Also, he provided helpful information and he
kindly dedicated to carry out this work.

Also, Deepest thanks and appreciation are extended to the late **Prof. Dr. Abd El-Fattah Gad Hashim** Professor of Economic Entomology, Plant Protection Research Institute, Agricultural Research Center, Ministry of Agriculture and Land Reclaimation.

Lastly, thanks are also due to my family specially my Parents (Father and Mother), my Brothers and Sisters and the entire members, colleagues and technicians at both Department of Horticulture Insects, Plant Protection Research Institute, Agricultural Research Center and Department of Agricultural Science, Institute of Environmental Studies & Research, Ain Shams University for their sincere cooperation to carry out this work.

ABSTRACT

Toxicity and biochemical effects of certain bio-pesticides (Emaskim, Proclaim, Radiant and Spintor) applied as surface contact against full grown larvae and in sandy soil on some immature stages (the full grown larvae and pupae) of two field strains of Giza and Qaluobiya governorates of the Mediterranean fruit fly, *Ceratitis capitata* (Wied.) compared to Laboratory strain were conducted under laboratory conditions. The obtained results revealed that the efficiency of the tested compounds varied according to the tested insecticides or the used stage. The 3rd larval instar was more sensitive than the pupal stage. The tolerance or resistance levels of the tested field strains to the used pesticides differed according to tested stage or examined compound. On the other hand, enzyme activities (acid and alkaline phosphatases) and glucose amounts as well as total protein contents were assessed in 4-day old pupae and newly emerged adults from 1-day old pupae treated with LC₅₀ of the used insecticides. These biochemical components in the three tested strains significantly varied according to tested pesticide, age of individuals as well as the used strain. The obtained results revealed the following:

1- Spintor was the most effective compound as contact toxicant to full grown larvae *C. capitata* of Giza governorate strain, followed by Proclaim, Radiant and Emaskim the values of LC₅₀ were 129.633, 199.649, 869.446 and 1114.517 ppm, respectively.

The tested compounds showed the same order against larvae of Qaluobiya governorate strain. Respecting Laboratory strain, Proclaim was the most toxic to the third larvae followd by Emaskim, Radiant and Spintor.

- 2- The two field strains were more tolerable to Proclaim, but they were more susceptible to Spintor.
- 3- In sandy soil, Radiant was the most efficient against the third larvae of Giza governorate strain, followed by Emaskim, Procalim and Spintor, that recorded LC50 values of 62.165, 63.657, 72.179 and 99.599 ppm respectively. Emaskim had the highest toxicity against the full grown larvae of Qaluobiya governorate strain, whereas Spintor was the lowest.
- 4- Emaskim was the most effective to 1-, 3- and 5- day old pupae of *C. capitata* of the three tested strains in sand. Followed by the other compound.
- 5- The tested bio-pesticides disturbed Glucose levels in pupae and adults of *C. capitata*.
- 6- A significant increment in activity of both acid and alkaline phosphateses was obtained in the treated individuals of *C. capitata*.
- 7- The tested bio-pesticides showed differently significant effects on level of total protein in the treated individuals of *C. capitata* of the examined strains.

CONTENTS

	Page
I- INTRODUCTION	1
II- REVIEW OF LITERATURE	4
1- Toxicity of Pesticides on Fruit Flies and Other Insects	4
2- Effect of Pesticides on Some biochemical components	17
III- MATERIAL AND METHODS	30
1- Rearing technique	30
2- Pesticides used	31
3- Procedure	34
3.1. Surface contact application	34
3.2. Sandy soil application	34
4- Effect of tested biocides on some biochemical parameters	
in the tested strains	35
4.1. Biochemical analysis	35
4.1.1. Determination of Glucose	36
4.1.2. Determination of phosphatases	36
4.1.3. Determination of Total protein	37
5- Statistical Analysis	37
IV- RESULTS AND DISCUSSION	38
1. Toxicity of Certain Pesticides Against Some Immature	
Stages of Ceratitis capitata Under Laboratory Conditions.	38
1.1. Surface contact treatment	38
1.1.1. Full grown larvae	38
1.1.1.1. Giza gov. strain	38
1.1.1.2. Qaluobiya gov. strain	41
1.1.1.3. Laboratory strain	44
1 1 1 4 Resistance or tolerance level	47

1.2. Sandy soil treatment	49
1.2.1. Full grown larvae	49
1.2.1.1. Giza gov. strain	49
1.2.1.2. Qaluobiya gov. strain	49
1.2.1.3. Laboratory strain	54
1.2.1.4. Resistance or tolerance level	57
1.2.2. One-day old pupae	59
1.2.2.1. Giza gov. strain	59
1.2.2.2. Qaluobiya gov. strain	59
1.2.2.3. Laboratory strain	64
1.2.2.4. Resistance or tolerance level	67
1.2.3. Three-day old pupae	67
1.2.3.1. Giza gov. strain	67
1.2.3.2. Qaluobiya gov. strain	71
1.2.3.3. Laboratory strain	74
1.2.3.4. Tolerance level	74
1.2.4. Five-day old pupae	78
1.2.4.1. Giza gov. strain	78
1.2.4.2. Qaluobiya gov. strain	78
1.2.4.3. Laboratory strain	83
1.2.4.4. The tolerance level	86
1.2.5. Recaptulation of data	90
2. Effect of The Tested Pesticides on Some biochemical	
components	92
2.1. Glucose	92
2.1.1. Pupae	92
2.1.2. Adult	94
2.2 Phoenhatases	0.4

2.2.1. Acid phosphatase	94
2.2.1.1. Pupae	94
2.2.1.2. Adult	97
2.2.2. Alkaline phosphatase	99
2.2.2.1. pupae	99
2.2.2.2. Adult	101
2.3. Total protein	101
2.3.1. Pupae	101
2.3.2. Adult	104
V- SUMMARY	110
VI- REFERENCES	123
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1	Toxicity of certain biopesticides applied as surface	
	contact against full grown larvae of Giza gov. strain of	
	C. capitata under laboratory conditions	39
2	Toxicity of certain biopesticides applied as surface	
	contact against full grown larvae of Qaluobia gov.	
	strain of C. capitata under laboratory conditions	42
3	Toxicity of certain biopesticides applied as surface	
	contact against full grown larvae of Laboratory strain of	
	C. capitata under laboratory conditions	45
4	Tolerance level of full grown larvae of the tested strains	
	to certain biopesticides as surface contact	48
5	Toxicity of certain biopesticides applied in sandy soil	
	against full grown larvae of Giza gov. strain of C.	
	capitata under laboratory conditions	50
6	Toxicity of certain biopesticides applied in sandy soil	
	against full grown larvae of Qaluobiya gov. strain of C.	
	capitata under laboratory conditions	52
7	Toxicity of certain biopesticides applied in sandy soil	
	against full grown larvae of Laboratory strain of C.	
	capitata under laboratory conditions	55
8	Tolerance level of full grown larvae of two field strains	
	to certain biopesticides in sandy soil	58
9	Toxicity of certain biopesticides applied in sandy soil	
	against 1-day old pupae of Giza gov. strain of C.	
	capitata under laboratory conditions	60
10	Toxicity of certain biopesticides applied in sandy soil	
	against 1-day old pupae of Qaluobiya gov. strain of C.	62

No.	Title	Page
	capitata under laboratory conditions	
11	Toxicity of certain biopesticides applied in sandy soil	
	against 1-day old pupae of Laboratory strain of C.	
	capitata under laboratory conditions	65
12	Tolerance level of one-day old pupae of two field	
	strains of C. capitata to certain biopesticides in sandy	
	soil	68
13	Toxicity of certain biopesticides applied in sandy soil	
	against 3-day old pupae of Giza gov. strain of C.	
	capitata under laboratory conditions	69
14	Toxicity of certain biopesticides applied in sandy soil	
	against 3-day old pupae of Qaluobiya gov. strain of C.	
	capitata under laboratory conditions	72
15	Toxicity of certain biopesticides applied in sandy soil	
	against 3-day old pupae of Laboratory strain of C .	
	capitata under laboratory conditions	75
16	Tolerance level of three-day old pupae of two field	
	strains of <i>C. capitata</i> to certain biopesticides in sandy	
	soil	77
17	Toxicity of certain biopesticides applied in sandy soil	
	against 5-day old pupae of Giza gov. strain of C.	
	capitata	79
18	Toxicity of certain biopesticides applied in sandy soil	
	against 5-day old pupae of Qaluobiya gov. strain of C.	0.1
	capitata under laboratory conditions	81
19	Toxicity of certain biopesticides applied in sandy soil	
	against 5-day old pupae of Laboratory strain of C.	0.4
	capitata under laboratory conditions	84