

FACULTY OF AGRICULTURE

DEVELOPMENT OF A POTATO DIGGER

By

TAREK HUSSEIN ALI MOHAMED

B.Sc. Agric. Mech., Cairo Univ., 1985 M. Sc. Agric. Eng., Cairo Univ., 2002

Thesis
Submitted In Partial Fulfillment of
The Requirements for the Degree of
Doctor of philosophy
In
Agricultural Engineering

Agricultural Engineering Department Faculty of Agriculture Cairo University

2006

FACULTY OF AGRICULTURE

DEVELOPMENT OF A POTATO DIGGER

By

TAREK HUSSEIN ALI MOHAMED

B.Sc. Agric. Mech., Cairo Univ., 1985 M. Sc. Agric. Eng., Cairo Univ., 2002

A Thesis Submitted In Partial Fulfillment of The Requirements for the Degree of Doctor of philosophy In

Agricultural Engineering

Agricultural Engineering Department – Faculty of Agriculture-Cairo University

Supervised by:-

Prof. Dr. Samy Mohamed Younis (Principle supervisor)

Prof. Dr. Samy Mohamed Younis Dr. Mohamed Ibrahim Ghonimy

Prof., Agric. Eng. Dept., Faculty of Agriculture, Cairo University

Assoc. Prof., Agric. Eng. Dept., Faculty of Agriculture, Cairo University

(DATE)

(LIBRARIAN)

(APPROVAL SHEET)

DEVELOPMENT OF A POTATO DIGGER

By TAREK HUSSEIN ALI MOHAMED

B.Sc. Agric. Mech., Cairo Univ., 1985 M. Sc. Agric. Eng., Cairo Univ., 2002

THIS THESIS FOR Ph.D. DEGREE IN AGRIC. ENGINEERING HAS BEEN APPROVED BY:

Prof. Dr. Mohamed Saed- El-Deen El-Shal	
Prof. and head of Agric. Engineering, Faculty of	
Agriculture, Zagazig University	•••••
Prof. Dr. Aly Ahmed Mostafa Khattab Prof. of Mechanical design, Faculty of Engineering,	
Cairo University	
Dr. Mohamed Ibrahim Ghonimy	
Associate Prof. of Agric. Engineering, Faculty of Agriculture, Cairo University	
Prof. Dr. Samy Mohamed Younis	
(Principle supervisor)	
Prof. of Agric. Engineering, Faculty of Agriculture,	
Cairo University	
DEPOSITED AT THE FACULTY LIB	RARY

Name of Candidate: Tarek Hussein Ali Mohamed degree: Ph.D.

Title of thesis: DEVELOPMENT OF A POTATO DIGGER

Supervisors: Prof. Dr. Samy Mohamed Younis Dr. Mohamed Abrahim Ghonimy

Department : Agricultural Engineering Department Branch : Farm Mechanization Approval :

ABSTRACT

The aim of this study was to develop a local machine that deals with the root crops, using the theory of vibratory digging blades to decrease the required drawbar pull. This aim was planned to be realized through the following stages:-

- 1) Study some characteristics of some potato varieties. These characteristics were tuber length, tuber diameter, tuber height, tuber weight, tubers surface are, tubers volume and firmness.
- 2) Evaluation the performance of the original digger. 3) Modification steps:- A vibratory device was fitted to the digger. The vibratory device was consists of 3 subsystems added to the original digger:-
- (1) Beam holder. (2) Vibrating device. (3) Vibrating transmission system.

Technical and economical evaluation of the developed digger. The technical evaluation showed that :-

- The developed digger success to decrease the drawbar pull at forward speeds of 0.9,1.5,1.9 and 3.2 km/h with decreasing percentage of 25.17%, 25.91%, 28.43% and 30.47% respectively comparing with the original digger records at amplitude and frequency (A=10 mm & (ω) =1200 rpm).
- The optimum amplitude was 0.6 mm with frequency of 800 rpm that give suitable draw bar pull with low bruising ratio. The drawbar pull was reduced with decreasing percentage of 15.42, 16.93, 19.7 and 12.29 %at forward speeds of 0.9, 1.5, 1.9 and 3.2 km/h respectively comparing with the original digger records.
- The results shows that a mathematical relation ship can be equated with the performance parameters (λ , k and T) and the drawbar pull.
- The developed digger can operate with 110 hp tractors instead of 140 hp tractors or more thus the harvesting costs would decrease.
- The modification success to increase the digger field capacity by 8.3% and decrease the operation costs per feddan by 28.98%.
- The economical evaluation showed that the total cost of the machine with a tractor 110 hp was 74.5 LE/h. the IRR is 72 % and NPV of 4579 LE. The pay back period was 2.1 years.
- The modification success to decrease the bruising from 7.98 to 7.88 by 1.25 % and decrease the un-harvested tuber from 1.76 to 1.69 % by 0.07%. These values can be translated to extra economical losses that could be added on the using of excess high power of the tractors.

ACKNOWLEDGEMENT

The author wishes to express his sincere thanks and appreciation to *Dr. SAMY MOHAMED YOUNIS*, Professor of Agricultural Engineering, Faculty of Agriculture, Cairo University, for his continuous supervision, advice, encouragement and guidance.

The author wishes to express his deep and sincere thanks to *Dr. MOHAMED IBRAHIM GHONIMY*, Associate Professor of Agricultural Engineering, Agricultural Engineering Department, Faculty of Agriculture, Cairo University for his valuable assistant in particular.

The author wishes to express his deepest thanks to the staff members of Agricultural Engineering Department, Faculty of Agriculture, Cairo University especially *Dr. AHMED EL-RAIE and Dr .MOHAMED OMRAN*.

Also, the author wishes to express his deep and sincere regards to the members of Agricultural Engineering Sector – Ministry of Agriculture for their valuable assistance.

TABLE OF CONTENTS

		Page
	ABSTRACT ACKNOWLEGMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES	
1	INTRODUCTION	1
2	REVIW OF LITERATURE	4
2-1	Potato plant	4
2-2	Some characteristics of the potato tuber	6
2-3	Essential features of root crop harvesters	9
2-3-1	Bulk harvesting machinery	10
2-3-2	Mathematical analyses for cutting tools of bulk harvesting	13
	machinery	
2-4	Fundamental problems of potato diggers	27
2-5	Vibratory root-crop harvesters	30
2-5-1	Fundamental construction of the vibratory harvesters	31
2-5-2	Parameters affect on the performance of the vibratory	33
	root-crop harvesters	
2-6	Factors affecting on the potato harvesting	43
2-6-1	Potato bruising	43
2-6-2	Types of bruising	45
2-6-3	Preventing potato bruising	47

2-7	Instrumentation for measuring before and after harvesting	55
2.7.1	Instrumentation for detection the ridge geometric	55
2.7.1.1	The ridge profieometer method	57
2.7.1.2	The video camera method	58
2.7.2	Detection the plant position locations	59
2.7.2.1	Detection the under ground plant position	59
2.7.2.2	Detection the above ground plant position	61
2.7.3	Damage measurement	62
3 3-1	MATERIALS AND METHODS The original digger	64 65
3-2	The developed digger	67
3-2-1	Beam holders	67
3-2-2	Designing the vibrating device	71
3-2-2-1	Selecting the suitable reciprocating speeds	71
3-2-2-2	Reciprocating ruler design	78
3-2-2-3	Cams design	81
3-2-2-4	Arm (Follower)	83
3-2-2-5	Shaft design	85
3-2-2-6	Bearing selection	87
3-2-2-7	Design of keys.	90
3-2-2-8	Design of welded joints	92
3-2-3	Transmission system	94
3-3	Tractors	100
3-4	Instruments and tools	101
3-4-1	Stop watch	101

3-4-2	Dynamometer	102
3-4-3	Tachometer	103
3-4-4	Measuring tape	103
3-5	Potato crops	103
3-6	Measurements and calculation	104
3-6-1	The ratio between vibrating and forward speed(λ)	104
3-6-2	The ratio between the acceleration of the vibrating	104
	blade to the forward speed (ρ)	
3-6-3	The ratio (k) between the acceleration to the	104
	gravitational acceleration	
3-6-4	Over all parameter (T)	105
3-6-5	Draw bar pull (F)	105
3-6-6	Bruising (B)	106
3-6-7	Digger performance rate (FC_d)	106
3-6-8	Blade design treatments	107
3-6-8-1	Blade digging angle	109
3-6-8-2	Blade coating	109
3-6-9	Determining some physical characteristics for potato	108
3-6-9-1	Measurement the axial dimensions	108
3-6-9-2	Surface area	108
3-6-9-3	Potato tubes firmness	109
3-6-10	Financial evaluation	110
3-6-10-1	Operation costs	110
3-6-10-2	Internal rate of return (IRR)	111
3-6-10-3	Net present value (NPV)	111
3-6-10-4	Pay back period (PBP)	111
3-6-10-5	Other economical evaluations	112

4	RESULTS AND DISCUSSION	113
4-1	Physical characteristics of potato tubers	113
4-1-1	Tubers dimensions	113
4-1-2	Tubers weight	117
4-1-3	Tubers volume and surface area	118
4-1-4	Firmness of some verities of potato tubers	119
4-2	Performance of the original digger before	119
	development	
4-2-1	Original digger field capacity under the selected	119
	gears	
4-2-2	Effect of digging angle on bruising	123
4-2-3	The required drawbar pull for the original digger	125
4-3	Performance of the developed digger	128
4-3-1	Required drawbar pull with reciprocating blades	128
4-3-1-1	Required drawbar pull with reciprocating blades at	129
	amplitude (3) mm	
4-3-1-2	Required drawbar pull with reciprocating blades at	134
	amplitude (5) mm	
4-3-1-3	Required drawbar pull with reciprocating blades at	139
	amplitude (6) mm	
4-3-1-4	Required drawbar pull with reciprocating blades at	144
	amplitude (10) mm	
4-3-1-5	Overall study (the effect of drawbar pull performance parameters on the required drawbar pull)	149

4-3-2	Effect of the reciprocating blades on tuber bruising and harvesting losses	155
4-3-2-1	Effect of the reciprocating blades on tuber bruising and losses at amplitude of (3) mm	155
4-3-2-2	Effect of the reciprocating blades on tuber bruising and losses at amplitude of (5) mm	162
4-3-2-3	Effect of the reciprocating blades on tuber bruising and losses at amplitude of (6) mm	169
4-3-2-4	Effect of the reciprocating blades on tuber bruising and losses at amplitude of (10) mm	176
4-4	Effects of the blade coating on the drawbar pull at the optimum parameter (T)	183
4-4-1	Effect of the blade coating on the drawbar pull at the	183
	optimum parameter (T)	
4-4-2	Effect of the blade coating on bruising and harvesting	188
	losses with coated blade	
4-5	Developed digger field capacity	194
4-6	Developed digger operation cost	194
5	SUMMARY AND CONCLUSION	198
6	REFERENCES	203
7	APPENDIX	213
8	ARABIC SUMMARY	

NOMENACLUTRE

Symbol	Meaning
A	Blade area
A_0	Harvested area
$A_{\rm l}$	Tuber projected area in x axes
A_2	Tuber projected area in y axes
A_3	Tuber projected area in z axes
A_c	Cutting area
а	Dimension of the tuber in x axes
a_{max}	Max. dimension of horizontal axes of the tuber
a ₁ ,a ₂ ,a ₃	The dimensions of the tubers
AC	Area of the minimum circle can surround the shape.
AP b	Projection area. Blade width
b b	Dimension of the tuber in y axes, m;
b_1, b_2, b_3	Constants for volume equation
b_{beam}	Beam width
b_{max}	Max. dimension of vertical axes of the tuber
b_s i	Width over which a cluster of tubers lies;
C	Oil price
C_b	Bearing load rating capacity
c	Dimension of the tuber in z axes, m.
DC	Radius of the minimum circle can surround the projection of the shape.
DE	Radius of a circle its area equal of the projection of the shape.
$D_{{\scriptscriptstyle beam}}$	Outer diameter
$d_{{\scriptscriptstyle beam}}$	Inner diameter
d_{shaft}	Shaft diameter
d_s	Diameter of the shaft
E	Modules of Elasticity for steel blades
$e_{ m max}$.	Max. distance between cam center and max. stroke point.
e_c	Eccentricity
F	Applied force

Symbol	Meaning
F_f	Force due to friction between the root and the cutting edge.
F_s	Shearing force for the key
FC_d	Digger performance rate
$\begin{array}{c} F_r \\ F_a \end{array}$	Redial load acting on the bearing Axial load acting on the bearing
F_c	Digging force
F_C	The maximum reading of the dynamometer at digging angle of $40^{\rm o}$
F.S	Factor of safety
$F_{\it follower}$	The max. load on the arm
f	Coefficient of sliding friction between the root and the cutting edge of the share.
${f}_{p}$	Potato tubers firmness for Spunta variety
fc	Fuel price
G_1	Normal components of the inertia force
h	Tubers height
$ m h_w$	Weld size
h_k	Height of the key
h_s	Depth of under-cutting
he	Depth at which a cluster of tubers lies at the extreme ends of the share
I	Bending Moment of inertia
IRR i	Internal rate of return Interest rate
${f J}_1$	Normal components of the inertia force
K_{b}	Combined shock and (0) fatigue factor applied to bending moment
K_{t}	Combined shock and fatigue factor applied to torsional moment
$k_{pt_1}, k_{pt_2}, k_{pt_3}$	Tubers stiffness in x, y, z axes respectively
k_b	Blade stiffness
k_{pt}	Tubers stiffness

Symbol	Meaning
k_s	Soil stiffness
k	Ratio between the acceleration of the vibrating blade to the gravitational acceleration
$L \atop L_c$	Blade length from the blade edge to the supporting point Labor cost
$L_c \ L_r$	Beam length
L_k^r	Length of the key
M_{b}	bending moment applied on the blade
$M_{b \mathrm{max}}$.	The max. bending moment on the beam
m_b	Blade weight
m_{pt}	Average tuber weight
m_s	Soil weight
$M_{_t}$	Torsional moment
M_{b}	Bending moment
N	Number of labors
$N_{\it fb}$	Blade natural frequency
N_s	Soil natural frequency
n_{beam}	The beam, rpm
n	yearly working hours
N_{pt}	Tubers natural frequency
n_{t1}	Number of teeth of the drive
NPV	Net present value
Oc	Oil consumption
PP _b	Blade force per unit length Bearing equivalent dynamic load
P_c	Purchase price
Pt	Tractor power
PBP	Pay back period
Q	Force acts in the direction of motion of the soil layer
\mathbf{r}_1	Tuber max. radius
\mathbf{r}_2	Tuber the base radius

Symbol	Meaning
r	Crank radius
r_c S Sv S_y	Coefficient of repair and maintenance Surface area Salvage value Yield strength
$S_{ m Sallow}$	Allowable shear strength of the key material
T	Over all parameter for drawbar pull
$egin{array}{c} T_c \ T_m \ T_t \end{array}$	Total cost Max. torque on follower Transmitted torque for the key
•	Beam thickness
$T_{beam} \ t \ t_{c}$	Blade thickness Total consumed time
U	Unit draft of soil
V	Predicted volume of the tuber
$V_m \ V_0$	forward speed of the machine speed of oscillations
v_1	speed of the drive (for sprockets and idlers)
v_2	The speed of the driven(for sprockets and idlers)
V_{ho} ,	The initiation of cutting corresponds to that instant when the horizontal component of the oscillatory motion of the share
W	Blade width
$\mathbf{w}_{\mathbf{k}}$	Width of the key
Y	Anticipated length of time owned
$oldsymbol{\delta}_{ extsf{s}}$	force of the ridge axis relative to that of the share
$\sigma_{\scriptscriptstyle s}$	Shear stress
$\sigma_{_b}$	Blade bending stress
σ allow	Allowable stress of the blade
$\delta_{\scriptscriptstyle b}$	Maximum deflection of the reciprocating ruler
$oldsymbol{\sigma}_c$	Compression stress

Symbol	Meaning
$\sigma_{ m cr}$	Crushing stress
$oldsymbol{arphi}_r$	Angle of repose of the soil.
φ	Angle of sliding friction between the root and the cutting edge of the share
ω	Angular velocity of the crank
α	Digging angle
$lpha_c$	The digging angle
α_{s}	Angle subtended by the share with respect to the horizontal.
${\cal E}$	Angle which acts at with respect to the horizontal
$rac{\lambda_{ ext{c}}}{ au_{k}}$	Ratio between the crank radius to the oscillating radius Direct shearing stress for the key
au	Shear stress induced in the welded joint
$\sum 1$	Total length of the welded joint of the arm end .
$\stackrel{\lambda}{ ho}$	Ratio between vibrating and forward speed Ratio between the max. acceleration of the vibrating blade and the forward speed