

يسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار عن الغبار عن الغبار عن 20–40% عن 25–25 مئوية ورطوبة نسبية من 20–40% عن درجة حرارة من 15–25 مئوية ورطوبة نسبية من 15–25 مؤية ورطوبة نسبية من 15–25 مئوية ورطوبة نسبية من 25–25 مئوية ورطوبة نسبية من 25–31 مئوية ورطوبة نسبية من 20

بالرسالة صفحات لم ترد بالاصل

PARASITOLOGICAL AND BIOCHEMICAL STUDIES ON ALBINO MICE INFECTED BY SCHISTOSOMA MANSONI CERCARIAE IRRADIATED BY ULTRAVIOLET RAYS

A THESIS

Submitted in partial fulfilment of the requirements for the Master Degree of Science

Ce She

 $\mathbf{B}\mathbf{y}$

OSAMA MOHAMMAD SAYED MOSTAFA

B.Sc. (1988)

Zoology Department

Faculty of Science

Ain Shams University

SUPERVISORS

PROF.DR. ABD AL-HAFEZ HELMY MOHAMMAD

Emeritus Professor of Parasitology,

Zoology Department, Faculty of Science,

Ain Shams University.

PROF.DR. MOHAMMAD ALI SABER

Professor and Head of Biochemistry Department,

Theoder Bilharz Institute.

DR. SHADIA HASSAN MOHAMMAD

Assistant Professor of Parasitology,

Zoology Department, Faculty of Science,

Ain Shams University.

NOTE

Besides the work carried out in this thesis, the candidate has attended and passed successfully the following post-graduate courses in the academic year 1989-1990.

- 1. Parasitology.
- 2. Principles of Taxonomy.
- 3. Protozoology.
- 4. Advanced Invertebrates.
- 5. English Language.

Prof.Dr. Abd-Allah Ibrahim
Head of Zoology Department

CONTENTS

	Page
General introduction	1
Material and Methods	
Part I: Parasitological techniques	4
Part II: Histological techniques	14
Part III: Biochemical techniques	16
Chapter I	
Parasitological studies on mice infected	
with non-irradiated and ultraviolet-irradiated	
cercariae of Schistosoma mansoni	
Review of literature	24
Results	31
Discussion	71
Chapter II	
Histological Studies on Schistosoma	
mansoni worms developed from non-irradiated	
and ultraviolet-irradiated cercariae	
Review of literature	82
Results	88
Discussion	119
Chapter III	
Biochemical studies on sera of mice	
infected with non-irradiated and	•
ultraviolet-irradiated cercariae	
Review of literature	131
Results	137
Discussion	141
Summary and conclusions	145
References	149
Arabic Summary	171

ACKNOWLEDGMENTS

I would like to express my grateful thanks and deep appreciation to Prof.

Dr. Abd Al-Hafez Helmy Mohammad, Emeritus Professor of Parasitology,

Zoology Department, Faculty of Science, Ain Shams University for his general supervision, valuable advice and critically reading the final manuscript.

My deepest gratitude and sincer thanks are also due to Prof. Dr. Mohammad Ali Saber Professor and Head of Biochemistry Department, Theodor Bilharz Research Institute for his valuable supervision, sincere help during the performance of this work and for critical reading.

Grateful thanks and deep gratitude are due to Dr. Shadia Hassan Mohammad, Assistant Professor of Parasitology, Zoology Department, Faculty of Science, Ain Shams University for her continuous and deep interest in the work, help in designing the experiments, advice during the progress of the practical work and valuable criticism of the manuscript.

Thanks are also due to Prof. Dr. Abd-Allah Ibrahim, Head of Zoology Department, Faculty of Science, Ain Shams University for his interest in the work and continuous encouragement.

I would like also to express my deepest thanks to the staff of the Zoology Department, Faculty of Science, Ain Shams University for their continuous support.

Grateful thanks are also due to the staff of the Biochemistry Department and Schistosome Biological Supply Program (SBSP) at Theodor Bilharz Research Institute for their kind help.

LIST OF ABBREVIATIONS

CI: Common intestinal caecum.

DS: Different stages of spermatogenesis.

ED: Excretory duct.

EOT: Empty ootype.

FT: Folded tegumment.

GD: Gynaecophoric duct.

IC: Intestinal caecum (a).

IO: Immature ovary.

IVG: Immature vitelline gland.

M: Musculature.

MDO: Moderately developed oocytes.

MO: Mature oocyte.

NC: Non-cellular space.

O: Ovary.

OD: Oviduct.

OES: Oesophagus.

OG: Oesophageal gland.

OT: Ootype.

OS: Oral sucker.

P: Parenchyma cells.

PR: Primordial cells.

RS: Receptaculum seminis.

S: Sperm.

T: Tubercules.

TF: Testicular follicle.

TG: Tegument.

U: Uterus.

UTF: Undeveloped testicular follicle.

VC: Vacuolar cavity.

VD: Vitelline duct.

VG: Vitelline gland.

VS: Ventral sucker.

VT: Vitelline cells.

LIST OF TABLES

		Page
Table 1.	Mean worm recovery from the liver and the mesenteries of mice exposed to 200 non-irradiated and 3-, 6- and 9-sec UV-irradiated S. mansoni cercariae.	37
Table 2.	Mean male and female worms recovered from mice exposed to 200 non-irradiated and 3-, 6- and 9-sec UV-irradiated S. mansoni cercariae.	38
Table 3.	Mean worm recovery from the liver and the mesenteries of mice exposed to 500 non-irradiated and 1-, 2- and 3-min UV-irradiated S. mansoni cercariae.	47
Table 4.	Mean male and female worms recovered from mice exposed to 500 non-irradiated and 1-, 2- and 3-min UV-irradiated S. mansoni cercariae.	50
Table 5.	Mean number of normal and stunt worms obtained from mice exposed to 500, 1-, and 2-min UV-irradiated \underline{S} . mansoni cercariae.	51
Table 6.	Mean number of eggs/gram of faeces in mice infected with 200 non-irradiated and 3-, 6- and 9-sec UV-irradiated S. mansoni cercariae.	56
Table 7.	Mean number of eggs/gram of faeces in mice infected with 500 non-irradiated and 1-, 2- and 3-min UV-irradiated S. mansoni cercariae.	60
Table 8.	Mean number of eggs/gram of tissues in mice infected with 200 non-irradiated and 3-, 6- and 9-sec UV-irradiated S. mansoni cercariae.	64
Table 9.	Mean number of eggs/gram of tissues in mice infected with 500 non-irradiated and 1-, 2- and 3-min UV-irradiated S. mansoni cercariae.	69
Table 10:	The response profile of sera obtained from mice exposed to non-irradiated <u>S. mansoni</u> cercariae and UV-irradiated cercariae at various doses, reacting with adult-worm antigen in Western blotting assay.	139

LIST OF FIGURES

		Page
Fig. 1:	Mean worm recovery from mice infected with 200 non-irradiated and 3-, 6- and 9-sec UV-irradiated cercariae.	39
Fig. 2:	Mean worm recovery from the liver of mice infected with 200 non-irradiated and 3-, 6- and 9-sec UV-irradiated cercariae.	40
Fig. 3:	Mean worm recovery from the mesenteries of mice infected with 200 non-irradiated and 3-, 6- and 9-sec UV-irradiated cercariae.	40
Fig. 4:	Mean number of male worms obtained from mice infected with 200 non-irradiated and 3-, 6- and 9-sec UV-irradiated cercariae.	41
Fig. 5:	Mean number of female worms obtained from mice infected with 200 non-irradiated and 3-, 6- and 9-sec UV-irradiated cercariae.	41
Fig. 6:	Mean worm recovery from mice infected with 500 non-irradiated and 1-, 2- and 3-min UV-irradiated cercariae.	48
Fig. 7:	Mean worm recovery from the liver of mice infected with 500 non-irradiated and 1-, 2- and 3-min UV-irradiated cercariae.	49
Fig. 8:	Mean worm recovery from the mesenteries of mice infected with 500 non-irradiated and 1-, 2- and 3-min UV-irradiated cercariae.	49
Fig. 9:	Mean number of normal and stunt male worms obtained from mice exposed to 500, 1-min UV-irradiated cercariae.	52
Fig. 10:	Mean number of normal and stunt female worms obtained from mice exposed to 500, 1-min UV-irradiated cercariae.	52

		Page
Fig. 11:	Mean number of normal and stunt male worms obtained from mice exposed to 500, 2-min UV-irradiated cercariae.	53
Fig. 12:	Mean number of normal and stunt female worms obtained from mice exposed to 500, 2-min UV-irradiated cercariae.	<i>5</i> 3
Fig. 13:	Mean number of ova/gram of the faeces of mice infected with 200 non-irradiated and 3-, 6- and 9-sec UV-irradiated cercariae.	57
Fig. 14:	Mean number of ova/gram of the faeces of mice infected with 500 non-irradiated and 1-, 2- and 3-min UV-irradiated cercariae.	61
Fig. 15:	Mean number of ova/gram of the liver of mice infected with 200 non-irradiated and 3-, 6- and 9-sec UV-irradiated cercariae.	65
Fig. 16:	Mean number of ova/gram of the intestine of mice infected with 200 non-irradiated and 3-, 6- and 9-sec UV-irradiated cercariae.	65
Fig. 17:	Mean number of ova/gram of the liver of mice infected with 500 non-irradiated and 1-, 2- and 3-min UV-irradiated cercariae.	70
Fig. 18:	Mean number of ova/gram of the intestine of mice infected with 500 non-irradiated and 1-, 2- and 3-min UV-irradiated cercariae.	70
Fig. 19:	Section of a male worm developed from a non-irradiated cercaria.	89
Fig. 20:	Sector of the dorsal surface of a male developed from a non-irradiated cercaria.	89
Fig. 21:	Sector of the dorsal surface of a male worm developed from a 2-min UV-irradiated cercaria.	91
Fig. 22:	T.S. of the anterior region of a male developed from a non-irradiated cercaria.	93

		Page
Fig. 23:	T.S. of the middle region of a male developed from a non-irradiated cercaria.	93
Fig. 24:	T.S. of the posterior region of a male worm developed from a non-irradiated cercaria.	94
Fig. 25:	T.S. of the anterior third of a male worm developed from a 2-min UV-irradiated cercaria.	96
Fig. 26:	Sector of the oesophageal region.	97
Fig. 27:	T.S. of the anterior region of a male worm developed from a non-irradiated cercaria showing the connection between the oesophagus and the intestinal caecum.	97
Fig. 28:	Sector showing the multinucleated epithelium of the gut wall.	99
Fig. 29:	L.S. of the female ovary developed from a non-irradiated cercaria.	100
Fig. 30:	Section of a female worm developed from a non- irradiated cercaria, passing through the middle part of the ovary.	101
Fig. 31:	T.S. of a female worm developed from a non- irradiated cercaria passing through the posterior portion of the ovary.	101
Fig. 32:	L.S. of a female worm developed from a 1-min UV-irradiated cercaria.	103
Fig. 33:	T.S. of a female worm developed from a 1-min UV-irradiated cercaria.	103
Fig. 34:	T.S. of a female worm developed from a 2-min UV-irradiated cercaria.	104
Fig. 35:	Sector of the ovary of a female developed from a 2-min UV-irradiated cercaria.	104
Fig. 36:	Sector of a female developed from a non- irradiated cercaria showing the oviduct.	105

		Page
Fig. 37:	Sector of a female worm obtained from a non- irradiated cercaria showing the receptaculum seminis.	106
Fig. 38:	Sector of a female worm obtained from a 1-min UV-irradiated cercaria showing the receptaculum seminis devoid of sperms.	106
Fig. 39:	Sector of a female worm obtained from a non- irradiated cercaria showing the ootype and a fully formed egg.	108
Fig. 40:	T.S. of a female worm developed from a non-irradiated cercaria showing the uterus.	110
Fig. 41:	T.S. of the posterior part of a female worm developed from a non-irradiated cercaria showing the well developed vitelline gland.	112
Fig. 42:	T.S. of the posterior part of a female worm developed from a 1-min UV-irradiated cercaria showing the immature vitelline gland.	112
Fig. 43:	L.S. of a male worm developed from a non-irradiated cercaria.	113
Fig. 44:	Sector of a male worm developed from a non-irradiated cercaria showing 7 testicular follicles.	115
Fig. 45:	Sector of a male worm developed from a non- irradiated cercaria showing the testicular follicles, different stages of spermatogenesis and the sperms scattered in the testicular follicles.	115
Fig. 46:	Sector of a male worm developed from a 1-min UV-irradiated cercaria showing the mature oocytes within the testicular follicles.	116
Fig. 47:	T. S. of a male worm developed from a 1-min UV-irradiated cercaria showing the mature occurs and a non-cellular spaces.	116