A pilot study of some endocrine sequelae in survivors of childhood cancers

Protocol Thesis
Submitted for partial fulfillment of the M.D. Degree in
''Pediatrics''

By

Shereen Mohamed Abd El-Ghany

M.B.B., Ch., M.Sc. Pediatrics Faculty of Medicine- Ain Shams University

Supervised by

PROF. DR. Mona Abd El-Kader Salem

Professor of Pediatrics
Faculty of Medicine- Ain Shams University

PROF. DR. Mona Hussein El-Samahy

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

PROF. DR. Azza Abd El-Gawad Tantawy

Professor of Pediatrics
Faculty of Medicine- Ain Shams University

DR. Nagham Mohamed Samy El-Beblawy

Assistant Professor of Pediatrics Faculty of Medicine-Ain Shams University

DR. Manal Abd El-Baky Mahmoud

Assistant Professor of clinical pathology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2004

دراسة استكشافية لبعض مضاعفات الغدد الصماء في المتعافين من أمراض السرطان في الأطفال رسالة مقدمة

توطئة للحصول علي درجة الدكتوراة في طب الاطفال مقدمة من

الطبيبة/ شيرين محمد عبد الغني بكالوريوس الطب والجراحة ماجستير طب الأطفال

كلية الطب- جامعة عين شمس

تحت إشراف

الأستاذة الدكتورة/ منى عبد القادر سالم أستاذ طب الأطفال كلية الطب - جامعة عين شمس الأستاذة الدكتورة/ منى حسين السماحي أستاذ طب الأطفال

كلية الطب - جامعة عين شمس الأستاذة الدكتورة/ عزة عبد الجواد طنطاوي أستاذ طب الأطفال

كلية الطب - جامعة عين شمس الدكتورة/ نغم محمد سامي الببلاوي أستاذ مساعد طب الأطفال كلية الطب - جامعة عين شمس الدكتورة/ منال عبد الباقي محمود أستاذ مساعد الباثولوجيا الإكلينيكية الطب - جامعة عين شمس كلية الطب - جامعة عين شمس كلية الطب - جامعة عين شمس كلية الطب - جامعة عين شمس

Acknowledgement

First and foremost thanks to Allah, the most kind and the most merciful, who gave me the power to finish this work.

I would like to express my sincere gratitude and deepest thanks to **Prof. Dr. Mona Abd El-Kader Salem,** Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her continuous encouragement, valuable advice and great support which helped me to put this work in its best form.

I am also very grateful and deeply indebted to **Prof. Dr. Mona El-Samahy**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her great support, valuable suggestions, and encouragement throughout this work.

I wish to express my deep respect and sincere thanks to **Prof. Dr. Azza Abd El-Gawad Tantawy**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her careful supervision, valuable advices, and unlimited help in all steps of this work.

I am also deeply grateful and would like to express my sincere thanks to **Assist. Prof. Dr. Nagham Mohamed Samy El-Beblawy**, Assistant Professor of Pediatrics Faculty of Medicine, Ain Shams University, for her kindness, encouragement and great assistance through this work.

Sincere gratitude is owed to **Assist**. **Prof. Dr. Manal Abd El-Baky Mahmoud**, Assistant Professor of clinical pathology, Faculty of Medicine, Ain Shams University, for her kind help and support during the practical part of this work.

My heartful thanks and appreciation goes to **Prof. Dr. Heba Hassan El-Sedfy,** Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her kindness, great help and sincere advice during this work.

Introduction:

The type of cancer observed during childhood and adolescence vary greatly and differ by age group, sex, and race (*Ries et al.*, 1999).

Survival rates for certain childhood malignancies have increased dramatically over the last 20 years, with 5-year survival rates in many common childhood malignancies in excess of 70% (Murray et al., 2002). As a consequence of the complex treatment regimens employed to achieve such remarkable cure rates, significant detrimental effects on the endocrine system, growth, and fertility are well recognized. Additionally, survivors of childhood cancer are at risk of subsequent malignant neoplasms and show increased mortality from non malignant disease (*Oeffinger et al., 2000*).

Endocrine sequelae of cancer therapy include thyroid carcinoma, hyperparathyroidism and hypopituitarism. Growth hormone secretion is recognized to be the most vulnerable of the hypothalamo-pituitary axes to radiation induced damage (*Murray et al.*, 1999).

The influence of chemotherapy, when used as the only form of treatment for cancer, on growth is poorly understood and has been studied in patients with hematologic neoplasms. In most of these studies, an influence on growth parameters (height/growth rate) was observed, whether as a reduction in growth rate during chemotherapy followed by catch up growth or in chronic form with absent or reduced subsequent recovery (*Roman et al.*, 1997).

Growth hormone deficiency that originate during childhood will cause suboptimal linear growth and a reduced final height, while young adults may experience the varied metabolic derangements and psychological abnormalities recognized as the "adult growth hormone deficiency syndrome" (*Sklar*, 2000).

Aim of the study:

The aim of this study is to evaluate the effect of chemotherapy and radiotherapy on growth and growth hormone secretion (at various levels of the hypothalamo-pituitary axis) in survivors of childhood cancer.

Patients and methods:

The study will be conducted on 50 of survivors of childhood cancer diagnosed and treated according to the protocols of hematology and oncology clinic _ Children's Hospital _Ain Shams University.

Survivors are defined as patients who are relapse free twelve months after completion of therapy. They will be divided into 2 groups:

1.Group I:

- A- Survivors of acute lymphoblastic leukemia who received chemotherapy only.
- B- Survivors of acute lymphoblastic leukemia who received chemotherapy and radiotherapy.

2.GroupII:

Survivors of solid tumors received chemotherapy and radiotherapy excluding brain tumors.

The studied groups will be subjected to the following:

- 1. History taking laying stress on:
- a) Type of the disease.
- b) Sex of the patient and age of start of therapy.
- c) Duration and type of treatment.
- d) Type and cumulative dose of every single chemotherapeutic drug used in treatment.
- e) Irradiation site and dose of radiotherapy and fractionation schedule.
- f) The available anthropometric data will be collected from the files before the start of treatment.
- 2. Thorough clinical examination including:
 - a) Anthropometric measurements using the Egyptian growth charts
- -Weight of the patients wearing minimal clothing will be measured with an electric scale, height using stadiometer.
 - Body mass index calculated as weight divided by height² (Kg/height² "m").
 - Measuring skin fold thickness using the method of Tanner.
- 3. Laboratory studies including:
 - a) Hematological examination: CBC and bone marrow examination.
 - b) Liver and kidney functions.
 - c) Growth hormone assessment:

Basal level.

After provocation using clonidine (which stimulates growth hormone secretion by acting at the hypothalamic level) and growth hormone releasing hormone (which stimulates growth hormone secretion by acting at the pituitary level).

- d) Serum IGF-1 level.
- c) T4 and TSH assessment to exclude hypothyroidism.
- 4. Plain x-ray of the left hand to assess bone age.
- 5. Other needed investigations to ensure maintained remission.

References:

- Murray RD, Darry KH, Gleeson HK, Shalet SM (2002): GH-deficient survivors of childhood cancer: GH replacement during adult life. JCEM vol. 87, No.1: 129-135.
- Murray RD, Brennan BM, Rahim A, Shalet SM (1999): Survivors of childhood cancer: long-term endocrine and metabolic problems dwarf the growth disturbance. Acta Pediatr Suppl 88: 5-12.
- Oeffinger KC, Eshelman DA, Tomlinson GE, Buchanan GR, Foster BM (2002): Grading of late effects in young adult survivors of childhood cancer followed in an ambulatory adult setting. Cancer 88: 1687-1695.
- *Ries LAG*, *Smith MA*, *Gurney JG* (1999): Cancer incidence and survival among children and adolescents. United States SEER program 1975-1995. National cancer institute, SEER program. NIH publ. No. 99-4649.
- Roman J, Villaizan CJ, Garcia-Foncillas J, Salvador J, Sierrasesumaga L (1997):
 Growth and growth hormone secretion in childhood with cancer treated with chemotherapy. J. Pediatr, 131: 105-112.
- Sklar C (2002): Paying the price for cure-treating cancer survivors with growth hormone. JCEM vol. 85, No. 12: 4441-4443.

List of Abbreviations

AIDS : Acquired immune deficiency syndrome

ALL : Acute lymphoblastic leukemia

AML : Acute myeloid leukemia

ANOVA : Analysis of variance

APCs : Antigen presenting cells

BCG : Bacillus calmate and guanine

BM : Bone marrow

BMI % : Body mass index percentile

BMI SDS: Body mass index standard deviation score

BMI : Body mass index

BMT : Bone marrow transplantation

BRMs : Biologic response modifiers

CAI : Central adiposity index

CMV : Cytomegalovirus

CNS : Control nervous system

CT : Computed tomography

CTV : Clinical target volume

CTX : Cytoxan

DNA : Deoxy ribonucleic acid

EBV : Epstein Barr virus

EBVCA : Epstein-Barr viral capsid antigen

G-CSF : Granulocyte colony stimulating factors

GH : Growth hormone

GHRH : Growth hormone releasing hormone

GTV : Gross tumor volume

GVHD : Graft versus hast disease

Gy : Gray

HDL-C: High density lipoprotein-cholesterol

HHV 8 : Human herpes virus 8

HIV : Human immunodeficiency virus

HLA : Human leucocyte antigenHSCs : Hematopoietic stem cells

HSCT : Hematopoietic stem cell transplantation

Ht % : Height percentile

Ht SDS : Height standard deviation score

HTLV-I : Human T cell leukemia virus type-I
HTLV-II : Human T cell leukemia virus type-II
HTLV-III : Human T cell leukemia virus type-III

IG : Immunoglobulin

IGF₁ : Insulin like growth factor-1IGF₂ : Insulin like growth factor-2

IgG : Immunoglobulin G

IL-2 : Interleukin-2JAR : Janus kinase

LAK : Lymphokine activated killer

LDL-C : Low density lipoprotein-cholesterol
 MEN₂ : Multiple endocrine neoplasia type 2
 MHC : Major histocompatability complex

MIBG : m-iodobenzylguanidine

6-MP : 6-mercaptopurine

MTX : Methotrexate

NHL : Non Hodgkin's lymphoma

PB : Peripheral blood

PBSC : Peripheral blood stem cells

PTV : Planning target volume

SI units : International system units

SISFT : Suprailiac skin fold thickness

SSSFT : Subscapular skin fold thickness

STAT : Signal transduction and transcription

TBI : Total body irradiation

TCR : T cell receptor

TG : Triglycerides

TIL : Tumor-infiltrating lymphocytes

TRH : Thyroxine releasing hormone

TSH : Thyroid stimulating hormone

UCB : Umbilical cord blood

W.C. : Waist circumference

VCR : Vincristine

VP-16 : Vepside

W/H : Waist / Hip ratio

List of Contents

P	Introduction	1
P	Aim of The Work	3
P	Review of literature	.4
	Childhood cancers	4
	General principles of cancer treatment	22
	Hypothalamic - pituitary axis	60
	Growth in survivors of childhood cancer	85
F	Patients and Methods	.101
P	Results	.114
F	Discussion	.176
P	Summary	.201
F	Conclusion	.206
P	Recommendations	.208
P	References	.209
F	Arabic summary	_

List of Figures

Fi	g. No. Title	Page No.
1.	Age and sex specific cancer incidence rates per mi	llion
	children in the United States	6
2.	Incidence of the most common types of cancer in c	hildren
	by age. The cumulative incidence is shown as a d	ashed
	line	6
3.	Phases of the cell cycle	24
4.	The relationship of time of exposure of phase-spec	eific
	drugs and cell-killing ability	26
5.	The physiologic somatotropic axis	66
6.	Schematic representation of endochondral	
	ossification.	90
7.	Development of an under active thyroid in associa	ntion
	with radiation dose	96
8.	Development of an over active thyroid in associa-	tion
	with radiation dose	98
9.	Comparison between Ht SDS at diagnosis and at evalua	ntion
	among survivors of group I and its subgroups (Ia and Ib)	121
10	. Comparison between Ht SDS at diagnosis and a	t evaluation
	among survivors of group II and its subgroups	,
	2	100

11. Comparison between subgroups Ia and Ib as regards height
percentiles for age and sex
12. Comparison between subgroups IIa and IIb as regards
height percentiles for age and sex
13. Comparison between groups I, II and the control group as
regards Ht SDS and sitting Ht SDS134
14. Comparison between groups I, II and the control
group as regards BMI SDS135
15. Comparison between groups I, II and the control
group as regards CAI135
16. Comparison between subgroups Ia, Ib and the
control as regards Ht and sitting Ht SDS138
17. Comparison between subgroups Ia, Ib and the control
as regards BMI SDS
16. Comparison between subgroups Ia, Ib and the control
as regards CAI139
17. Comparison between subgroups IIa, IIb and the
control as regards BMI SDS142
18. Comparison between subgroups IIa, IIb and the
control as regards CAI142
19. Comparison between groups I, II and the control as
regards HDL-C and LDL-C144
20. Comparison between subgroups Ia, Ib and the control
as regards HDL-C and LDL-C146
21. Comparison between subgroups IIa, IIb and the
control as regards HDL-C and LDL-C148

22. Percentage of patients with GHD in subgroup
Ia152
23. Percentage of patients with GHD in subgroup
Ib
24. Percentage of patients with GHD in subgroup IIa154
25. Percentage of patients with GHD in subgroup IIb154
26. Percentage of patients with GHD, low IGF1, and combined
GHD and low IGF-1 in group I156
27. Percentage of patients with GHD, low IGF1, and combined
GHD and low IGF-1 in group II156
28. Correlation between Ht SDS and duration of treatment among
survivors of ALL162
29. Correlation between sitting Ht SDS and duration of treatment among
survivors of ALL163
30. Correlation between GHmax level and duration of treatment among
survivors of ALL166
31. Correlation between GHmax level and cumulative dose of oncovine
among survivors of ALL
32. Correlation between sitting Ht SDS and cumulative dose of cytoxan
among survivors of ALL173