

Effect of degree of Taper and Type of Cement on the Marginal Fit and Fracture Resistance of Two All-Ceramic Crowns

Thesis

Submitted to the Faculty of Dentistry
Ain-Shams University
for the partial fulfillment of the requirements of
the master degree in crown and bridge
(Fixed prosthodontics)

By

Sufian Yousef Ahmed Altelb
(B.D.S)
Alfateh University Libya
2004

بسم الله الرحمن الرحيم (ويسألونك عن الروح من أمر ربى ومأوتيتم من العلم ألا قليلا)

صدق الله العظيم

سورة الأسراء (ألايه ١٤-٥٥)

Supervisors

Dr.Tarek Salah

Assistant Professor of Fixed Prosthodontics
Faculty of Dentistry
Ain Shams University

Dr. Amr Saleh El-Etreby
Lecturer of Fixed Prosthodontics
Faculty of Dentistry
Ain Shams University

Acknowledgement

First of all, I feel thankful to **Allah** for giving me the guidance and internal support in all my life and in every step that I made until this study was completed.

I would like to express my deepest appreciation to **Dr. Tarek Salah Morsi** Assistant Professor of fixed prosthodontics, faculty of Dentistry, Ain Shams University, for his main support, invaluable effort, meticulous supervision and comments.

I would like to express my deepest gratitude to **Dr. Amr El-Etreby** lecturer of fixed prosthodontics, Faculty of Dentistry, Ain Shams University, for great guidance and help.

I would like to express my deep thanks to **Dr. Amina Mohamed Hamdy**, Assistant Professor and Head of Department of Crown & Bridge, Faculty of Dentistry, Ain Shams University, for her constant support and advice

I would like to express my deepest appreciation to **Dr. Mohamed Eldemellawy** Assistant Professor of fixed prosthodontics, faculty of
Dentistry, Ain Shams University, for his main support, advice and guidance.

Also I would like to express my deep thanks to **Dr. Mohamed Salah Ayoub**, Professor and Head of Department of Oral Pathology, Faculty of Dentistry, Ain Shams University, for his great support and guidance

Finally, I would like to thank all my **family**, especially my **Father** who taught me everything in my whole life and who had a major role after god in my career.

Dedication

This work is dedicated to

My Famíly, for their great care, support and guidance all the way in my life.

To my true friends, for their encouragement and great cooperation.

CONTENTS

	Page
List of Tables	i
List of Figures	iii
Introduction	1
Review of Literature	2
Aim of the study	39
Materials and Methods	40
Results	68
Discussion	85
Summary and Conclusions	94
References	97
Arabic Summary	

List of tables

I	Page
(Table 1) Materials used in this study	40
(Table2) Grouping of samples	43
(Table 3) Marginal gap results (Mean±SD) for both groups as function taper and cement	on of 68
(Table 4) Marginal gap results (Mean±SD) for both groups as function	on of 69
(Table 5) Comparison between marginal gap results (Mean \pm SD) of groups before cementation	both 70
(Table 6) Comparison between marginal gap results (Mean \pm SD) of groups before cementation	both 71
(Table 7) Two way analysis of variance ANOVA test of significance comparing variables affecting marginal gap results before cementation	
(Table 8) Marginal gap results (Mean±SD) for both groups as function taper and cement after cementation	on of 72
(Table 9) Comparison between marginal gap results (Mean \pm SD) of groups after cementation	both 73
(Table 10) Comparison between marginal gap results (Mean \pm SD) o	f both
groups after cementation	74

(Table 11) Comparison between marginal gap results (Mean \pm SD) of	both
cement groups	75
(Table 12) Three way analysis of variance ANOVA test of significance	;
comparing variables affecting marginal gap results after cementation	76
(Table 13) Comparison between marginal gap results (Mean \pm SD) before	ore
and after cementation	77
(Table 14) Fracture resistance results (Mean±SD) for both groups as	
function of taper and cement	78
(Table 15) Comparison between fracture resistance results (Mean ± SD) of
e.max group as function of taper and cement	79
(Table 16) Comparison between Fracture resistance results (Mean \pm SD)) of
zirconia group with different taper	81
(Table 17) Comparison between fracture resistance results (Mean \pm SD) of
both groups with taper 12 as function of cement	82
(Table 18) Comparison between fracture resistance results (Mean \pm SE)) of
both groups with taper 20 as function of cement	83
(Table 19) Three way analysis of variance ANOVA test of significance	;
comparing variables affecting fracture resistance results	84

List of Figures

Figure	Page
(Figure1)IPS e-max CAD block size C-14	41
(Figure2)Sirona InCoris zirconium F2 block	41
(Figure3)The milling machine	44
(Figure 4) Stainless steel dies (20, 12 degree)	45
(Figure 5) The start up menu of the program	46
(Figure 6) Select patient for new restoration	47
(Figure 7) Entering the required data to create new patient	48
(Figure 8) New restoration type selection	48
(Figure 9) Cerec propellant powder	49
(Figure 10) Digital impression of the prepared dies	50
(Figure 11) Animated photo of the prepared die	50
(Figure 12) Selection of restoration material	51
(Figure 13) Tracing of preparation margins	52
(Figure 14) Definition of insertion axis	52
(Figure 15) A. Buccal view	53
(Figure 15) B. Occlusal view	54
(Figure 15) C. Cut view: Adjustment of restoration design	54
(Figure 16) External view of milling Preview	55
(Figure 17) Selection of block used	56
(Figure 18) IPS e.max CAD block in its place in the milling machine	e 57
(Figure 19) Closer of the milling machine door	57

(Figure 20) Scanning of block dimension	58
(Figure21) IPS e.max CAD block after milling displaying a bluish color	58
(Figure 22) Checking of the crown on its corresponding metal die	59
(Figure 23) IPS e.max CAD block after crystallization displaying a white	itish
color	60
(Figure 24) device holding load (3 Kg) (Figure 25) Olympus camedia C-5060 digital camera fitted on Carl Z	63 Leiss
Steremicroscope	64
(Figure 26) Holding device	65
(Figure 27) Shots of the marginal taken	66
(Figure 28) (LIoyd) universal testing machine	67
(Figure29) Fracture of the crown sample	67
(Figure 30) Histogram of marginal gap mean values for both groups	s as
function of taper and cement	68
(Figure 31) Histogram of marginal gap mean values for both groups	s as
function of taper before cementation	69
(Figure 32) Histogram of marginal gap mean values for both groups befo	re
cementation	70
(Figure 33) Histogram of marginal gap mean values for both tapers before	e
cementation	71
(Figure 34) Histogram of marginal gap mean values for both groups as	
function of taper and cement after cementation	73
(Figure 35) Histogram of marginal gap mean values for both groups after	•
cementation	74
(Figure 36) Histogram of marginal gap mean values for both tapers after	
cementation	75

(Figure 37) Histogram of marginal gap mean values for both cement	
groups 70	5
(Figure 38) Histogram of marginal gap mean values before and after	
cementation 7	7
(Figure 39) Histogram of fracture resistance mean values for both groups a	ıs
function of taper and cement 73	8
(Figure 40) Histogram of fracture resistance mean values for e.max group a	ıs
function of taper and cement 7	9
(Figure 41) Histogram of fracture resistance mean values before, after	er
cementation discrepancy for zirconia subgroups 8	1
(Figure 42) Histogram of fracture resistance mean for both groups with tape	er
12 as function of cement 8	2
(Figure 43) Histogram of fracture resistance mean for both groups with tape	er
20 as function of cement 83	3

Due to the increasing interest in esthetics and the high concerns about the toxic and allergic reactions to certain alloys, patients and dentists have been looking for metal-free tooth colored restorations. For years, the traditional porcelain jacket crown provided dentistry with the (ultimate) esthetic dental restorations. This full-crown restorative material failed unfortunately to maintain its appeal mainly because of the lack of resistance to fracture. Despite that, dental ceramics are known for their natural appearance and their durable chemical and optical properties. The main advantages of porcelain responsible for its wide acceptance are its excellent esthetics properties, durability, and biocompatibility. Porcelain jacket crowns were limited to anterior teeth because of its low tensile strength due to presence of flaws.

The replacement of traditional metal-based fixed partial dentures (FPDs) with all-ceramic crowns and bridges has been driven by the improved esthetics and excellent tissue compatibility achieved using tooth-colored, metal-free systems.

Dental clinicians have remained suspicious about the structural longevity, potential abrasiveness and accuracy of fit of ceramic restoration. These concerns have directly influenced the development of new materials and laboratory processing systems. The recently introduced ceramic materials were claimed to possess high strength properties thus allowing the fabrication of anterior and posterior all ceramic crowns.

Introduction

Review of literature

Historical prospective

Approximately in 1774, a Parisian dentist **Nicholas Dubois de chemant,** made the first successful porcelain dentures at the Guerhard porcelain factory, replacing the stained ivory prosthesis of Duchateau. Dubois de chemant continually improved porcelain formulations, which were awarded both French and British patents, and fabricated porcelain dentures as part of his practice. In 1808, individually formed porcelain teeth that **G. Fonzi** intrduced in Paris contained embedded platinum pins. **Fonzi** called these teeth "terro-metallic incorruptibles" and their esthetic and mechanical properties provided a major advance in prosthetic dentistry. (1)

Improvements in translucency and color of dental porcelain were realized through the development that ranged from the formulations of **Elias Wildman** in 1838 to the vacum firing in 1949. Glass inlays were introduced by **Herbst** in 1882 with crushed glass frit fired in molds made of plaster and asbestos. ^(1, 2)

Feldspathic dental porcelain was adopted from European triaxial whiteware formulation (clay-quartz-feldspare), nearly coincident with their development. After decades of effort, Europeans mastered the manufacture of fine translucent porcelains, comparable to porcelains of the Chinese, by the 1720's. The use of feldspar to replace lime (calcium oxide) as flux, and high firing temperature were both critical developments in fine European porcelain₍₁₎

A noteworthy development occurred in the 1950's with the addition of leucite to porcelain formulations that elevated the coefficient of thermal expansion to allow their fusion to certain gold alloys to form complete crowns and fixed partial dentures. Refinements in metal-ceramic systems dominated dental ceramics research that resulted in improved alloys, porcelain- metal bonding and porcelains. The introduction of shrink free all-ceramic crown

system(Cerestore, Coors Biomedical, Lakewood,Colo) and a castable glass ceramic crown system(Dicor, Dentsply/York Division, York, Penn) in the 1980s provided additional flexibility for achieving esthetic results, introduced advanced ceramics with the innovative processing methods, and stimulated a renewed interest in all-ceramic prostheses. (1,2)

A high-alumina ceramic for the fabrication of FPD pontic structures was first introduced by **McLean** in 1967. He introduced in 1982, the platinum-bonded alumina FPD to reduce the problem of fracture through the connector area while eliminating the traditional cast-metal framework.⁽³⁾ However, this restorative option was not feasible due to a high rate of failure at the connector sites.

The Procera All Ceram Bridges system (Nobel Biocare,Goteborg, Sweden) uses a densely sintered high-purity aluminum-oxide framework. The framework is waxed-up as two single copings on the abutment teeth and a central pontic, which are then scanned and milled individually then fused together with a special veneering ceramics at the connector. The transverse flextural strength of the framework material ranges between 500 and 650 MPa with minimal critical connectors dimentions of 3 mm occluso-gingivally with surface area of 6 mm2. (4-7)

Continous developments in dental ceramics have led to the introduction of new systems for all-ceramic FPDs. In 1988 the In Ceram alumina system (Vita Zahnfabric, Bad Sackingen, Germany) which uses high temperature, sintered-alumina glass-infiltrated copings, was introduced for the fabrication of three unit anterior FPDs with transverse flexural strength of about 446 MPa and minimal critical connectors dimensions of 4mm occluso-gingivally and 3mm bucco-lingually. (8-11)

IPS Empress (Ivoclar Vivadent)

Is a leucite-reinforced glass ceramic core material. The framework can be fabricated either with the lost wax and heat-