Comparison between High-flux Hemodialysis and Online Hemodiafiltration as a Renal Replacement Therapy in End Stage Renal Disease Patients as Regards Nutritional Parameters

Thesis

Submitted for partial fulfillment of Master Degree in **Internal Medicine**

By

Haitham Mohamed Abdelhakeem *M.B.,B.Ch.*

Under Supervision of

Prof. Dr. Hesham Mohamed Elsayed

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Dr. Sherry Reda Kamel

Lecturer of Internal Medicine
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain shams University 2013

Acknowledgments

First and foremost, I feel always indebted to **Allah**, the Most Merciful, Who gives me power to accomplish this work.

I would like to express my deepest appreciation and sincere gratitude to **Prof. Dr. Hesham Mohamed Elsayed**,

Professor of Internal Medicine, Faculty of Medicine – Ain Shams University for his sincere help, constant encouragement, constructive critism, and valuable guidance; I was truly honored to work under his supervision.

I wish also to express my great gratitude and utmost appreciation to **Dr. Sherry Reda Kamel**, Lecturer of Internal Medicine, Faculty of Medicine – Ain Shams University for her valuable suggestions and instructions during the progress of this work.

I owe special thanks to **Family**, for their care, patience and continuous encouragement.

🖎 Haitham Mohammed Abdel Hakeem

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the work	6
Review of Literature	
Nutritional Status in a Dialysis Patient	7
High-Flux Hemodialysis	36
Hemodiafiltration (HDF)	47
Patients and Methods	101
Results	106
Discussion	129
Summary	146
Conclusion	148
Recommendations	149
References	150
Arabic Summary	

List of abbreviations

BUN : Blood urea nitrogen

Ca : Calcium

CRP : C-reactive protein

EPO : Erythropoietin

HDL : high density lipoprotein

HFHD : High-flux hemodialysis

LDL : Low density lipoprotein

LFHD : Low flux hemodialysis

max : Maximum

MIA : Malnutrition, inflammation, atherosclerosis

min : Minimum

n : Number

OLHDF : Online hemodiafiltration

PCR : Protein catabolic rate

PO4 : Phosphorus

Post-creat: Post dialytic creatinine

Post-urea : Post dialytic urea

Pre -creat: Pre dialytic creatinine

Pre-urea : Pre dialytic urea

PTH : Parathyroid hormone

SD : Standard deviation

TGD : Triglycerides

Wt : Weight

TMP : Trans membrane pressure

MIA :Malnutrition,Inflammation and

atherosclerosis

LBM :Lean Body mass

CRI : chronic renal impairment

DOPPS : Dialysis Outcomes and Practice Pattern

Study

AGEs :advanced glycosylation endproducts

DRA :Dialysis Related amyloidosis

List of Tables

Tab. No.	Title	Page
Table (1):	Some recent and ongoing studies evaluating effect of convective therapy as compared to standard HI on major clinical end points.	D
Table (2):	Descriptive analysis for the following data; (age weight, protein catabolic rate, pre-dialytic urea hemoglobin, uric acid, calcium, albumin, phosphorus in 22 patients on online hemodiafiltation at the start of the study and 6 months later	a, s) of
Table (3):	Descriptive analysis for the following data; (age weight, protein catabolic rate, pre-dialytic urea hemoglobin, uric acid, calcium, albumin phosphorus) in 18 patients on High flu hemodialysis at the start of the study and 6 month later.	a, n, x is
Table (4):	Comparison between the beginning of the study, months later as regard the following data: (age weight, protein catabolic rate, pre-dialytic urea hemoglobin, uric acid, calcium, albumin an phosphorus) in 22 patients on onlin hemodiafiltration using paired T test.	e, a, d ie
Table (5):	Comparison between the beginning of the study 6months later as regard the following data: (age weight, protein catabolic rate, pre-dialytic urea hemoglobin, uric acid, calcium, albumin an phosporus) in 18 patients on High flu hemodialysis using paired T test	e, a, d
Table (6):	Comparison between online hemodiafiltratio group and high flux hemodialysis group as regar delta change of the following parameters: (weigh protein catabolic rate, calcium, phosphorus, uri acid and predialytic urea)	rd t, ic

List of Tables (Cont...)

Tab. No.	Title	Page
Table (7):	Descriptive analysis of the following data (include kt/v, cholesterol, High density lipoprotein, lo density lipoprotein, post dialytic urea, pre dialytic creatinine, post dialytic creatinine, Iron ar Ferritin) at the start of the study, 6 months later 22 patients oh online hemodiafiltration.	w ic nd in
Table (8):	Descriptive analysis of the following data (include kt/v, cholesterol, High density lipoprotein, lo density lipoprotein, post dialytic urea, pre dialytic creatinine, post dialytic creatinine, Iron ar Ferritin) at the start of the study,6 months later 18 patients on High flux hemodialysis	w ic nd in
Table (9):	Comparison between the beginning of the studenth following data: (kt/cholesterol, high density and low density lipoproteins, pre and post dialytic creatinine, podialytic urea, iron and ferritin) in 22 patients of online hemodiafiltration.	v, ty st on
Table (10	comparison between the beginning of the study,6months later as regard the following data:(kt/v, cholesterol, high density and low density lipoproteins, pre and post dialytic creatinine, podialytic urea, iron and ferritin) in 18 patients of High flux hemodialysis.	ng ty st on
Table (11	group and high flux hemodialysis group as regardelta change of the following parameters: (kt/cholesterol, high density and low density lipoproteins, pre and post dialytic creatinine, podialytic urea, iron and ferritin).	rd v, ty st
Table (12):	Comparison between 2 groups in the following parameters: gender. type of anticoagulant, and Intradialytic hypotension attacks.	nd

List of Figures

Figure (1):	HDF is a mixture of HD and HF process	ses 61
Figure (2):	The diffusion of solutes is limited diffusion coefficients of the molecules;.	•
Figure (3):	The effect of convection with a progressincrease of molecular weight	
Figure (4):	HDF evolution tree	62
Figure (5):	Classic HDF	69
Figure (6):	On-Line hemodiafiltration	69
Figure (7):	Paired filtration dialysis (PFD)	70
Figure (8):	Mid dilution HDF	70
Figure (9):	Double high flux hemodiafiltration	71
Figure (10):	Push-pull HDF	71
Figure (11):	Comparison between the 2 studied ground regards follow-up of Protein catabolic ra	-
Figure (12):	Comparison between the 2 studied ground regards follow-up of Calcium	-
Figure (13):	Comparison between the 2 studied ground regards follow-up of Albumin	_
Figure (14):	Comparison between the 2 studied ground regards follow-up of Hemoglobin	_
Figure (15):	Comparison between the 2 studied ground regards follow-up of Uric Acid	
Figure (16):	Comparison between the 2 studied grouregards follow-up of Phosphorus	-
Figure (17):	Comparison between the 2 studied ground regards follow-up of Cholesterol	_

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (18):	Comparison between the 2 studied g regards follow-up of HDL	
Figure (19):	Comparison between the 2 studied g regards follow-up of LDL	
Figure (20):	Comparison between the 2 studied gregards follow-up of Triglycerides	

Introduction

aemodialysis (HD) is predominantly a diffusive process designed to clear small solutes (*Lowrie et al.*, 1981). Studies have shown that additional HD treatment to increase urea clearance does not appear to improve dialysis patient survival (*Ekonyan et al.*, 2002).

This led to the hypothesis that larger solutes may be important in determining medium- to longer-term dialysis patient survival (*Davenport et al.*, 2010).

To increase the spectrum of solutes cleared during HD, dialysers with greater pore size have been developed, and over the past 30 years, the proportion of patients dialyzing with high-flux membranes has increased compared to low-flux dialysers (*Vernon et al., 1992*). Also the clearance of middle sized solutes can be increased further by dialyser membranes designed to increase internal filtration (*Kerr et al., 1992*).

Hemodialysis treatment modalities are commonly classified according to membrane 'flux' (from Latin fluxus, a flowing, and variant of fluere, to flow). The term, together with the prefixes 'low' or 'high' is an indication of the size range of substances a particular membrane or dialyzer is able to remove, i.e. of its relative permeability (*Bowry et al.*, 2011).

As such, low- or high- flux membranes or therapies are highly general terms and do not allude to any specified or defined size ranges of uremic toxins — which themselves are also arbitrarily and variously classified according to solutes being small, middle or large (*Bowry et al.*, 2011).

Such is the generality of the terms 'low flux' and 'high flux' that it is often overlooked that developments in membrane technology, together with product positioning strategies of industry, has led to a change in the meaning and perception of the terms over recent years (*Bowry et al.*, 2011).

Membranes once considered as high flux only a decade or two ago are now categorized as low flux with the consequence that considerable confusion arises during interpretation of published data (*Bowry et al.*, 2011).

In the HEMO Study, for instance, where the effects of flux and dialysis dose on patient's survival were examined, dialyzers allocated to the high- flux group can, according to European perspectives, essentially be adjudged as low flux (*Bowry et al.*, 2011).

Patients requiring hemodialysis have the option of the following treatment modalities: LF- HD, HF- HD, HDF (hemodiafiltration) or HF (hemofiltration). Each modality differs in terms of the extent to which it relies on diffusion and convection, the two predominant solute transport mechanisms in dialysis (*Ledebo et al.*, 2002).

Adsorption (affinity of molecules for membrane material), is theoretically the third mechanism of removal occurring more by chance than by specific design and cannot precisely be catered for in any of the four treatment options (*Ofsthun et al.*, 1995).

Diffusive transport, driven by differences in concentrations in the blood and dialysate compartments, has the limitation that the rate of diffusion in free solution decreases with increasing molecular weight Thus, the relative contribution of diffusion to overall transport decreases the larger the solute. Diffusion also decreases with increasing membrane wall thickness (*Ofsthun et al.*, 1995).

Convection, which is the predominant mechanism of solute removal across the glomerular membrane, is a consequence of ultrafiltration of fluid across the dialysis membrane wall having a specified structure (*Ledebo et al.*, 2002).

Ultrafiltration, in turn, is affected by a number of factors such as transmembrane pressure gradient and properties of blood (flow, hematocrit and blood viscosity, plasma proteins, etc.) (*Ronco et al.*, 2002).

Both diffusion and convection are determined by the morphological characteristics of the dialysis membrane, i.e. the dimensions (pore size) and structure (degree of porosity) of the membrane wall (*Ronco et al.*, 2002).

Convection is the extent to which solutes (depending on their sieving at the separating region of the membrane) are 'dragged' along by the removed fluid (depending on hydraulic permeability of the support region of the membrane) (*Ledebo et al.*, 2002).

For the four treatment modalities in question, diffusive solute transport decreases in this order: LF- HD ~ HF- HD ~ HDF ~ HF. Solute transport in LF- HD is predominantly based on diffusive principles, having in reality a minor convective component depending on pore dimensions (*Ofsthun et al.*, 1995).

Conversely, convective transport decreases in this order: HF ~ HDF ~ HF- HD ~ LF- HD, with HF (without fluid in the dialysis compartment) being purely convective, having the highest High- flux membranes are thus used for all modalities except for LF- HD (*Ronco et al.*, 2002).

The Significance of Large Exchange Volumes In convective therapies like HF and HDF, convective transport is maximized by extensive ultrafiltration beyond the volume needed to achieve dry weight (*Ledebo et al.*, 1998).

To benefit fully from the convective component for blood purification, large fluid volumes need to be utilized (*Ronco et al., 2007*). By operating at peak UFR relative to the blood flow rates achievable for individual patients, high convective clearances for the larger uremic toxins can be achieved (*Ledebo et al., 1998*).

With the availability of large quantities of highly pure dialysis and substitution fluids, prepared 'on- line', UF volumes well beyond 15 liters are commonly realized (*Canaud et al.*, 2006).

Increased convection and removal of large quantities of fluid have been associated with several clinical advantages pertaining to decreased uremic toxin load, anemia correction, reduction of calcium- phosphate product, improved hemodynamic stability and vascular stability and to lower inflammation, an underlying condition of most diseased states (*Canaud et al.*, 2006).

The degree of convective transport is thus decisive from an overall clinical point of view; by removing (and replacing) larger volumes of fluid from the patient during on- line HDF (the most efficient treatment modality removing small and large solutes), more efficient blood cleansing is achieved (*OK et al.*, 2011).

Consistent with mechanistic considerations, the results of three independent studies involving large numbers of patients have indicated that a survival advantage is evident with high-volume on- line HDF The volume of substitution, a surrogate of the convective dialysis dose, may thus be considered as a critical factor that may impact patient mortality rates (*OK et al.*, 2011).