a Association Between Non Alcoholic Fatty liver Disease and Early Carotid Atherosclerosis

Thesis By

Khaled Marzouk Sadek M.B.B.Ch

For fulfillment of the master degree in Internal Medicine

Supervised by

Prof: Dr Emad Mohamed El Moatasem

Professor of Internal Medicine Cairo University

Dr Bahaa El Den Mostafa Abd El Moaty

Lecturer of Internal Medicine Cairo University

Faculty Of Medicine
Cairo University
2008

ACKNOWLEDGMENT

First of all and deeply from my heart, I would like to express my great thanks and gratitude to GOD. His favours and offers have surrounded me since birth till the present moment.

I would like to express my deepest thanks to *Prof. Dr. Emad*Mohamed El Moatasem. Professor of Internal Medicine. Cairo

university, for giving me the honour and great privilege of working

under his kind supervision and for his continuous encourgament and

guidance during and after my residency along this work and till now.

I would also like to express my sincere thanks to *Dr. Bahaa El Din Mostafa Abd El Moaty . Lecturer of Internal Medicine .* Cairo University . He offered me so much of his kind advices , and sacrified much of his valuable time to complete this work . He supported me in every step and did not save neither effort nor time to achieve this work .

I would also like to express my sincere gratitude to *Dr*. *Sherif*Sarie Eldeen. Lecturer of Vascular lab unit, Cairo university.

He offered me so much of his effort and time to complete Carotid duplex of this study.

Khaled Marzouk Sadek (2008)

Dedication

All appreciation to my parents and my wife for their support and Patience to complete this work .

I would also like to express my sincere gratitude to my only brother Sherif , my son Sherif , my father – in – low and my mother –in-low.

Khaled Marzouk Sadek (2008)

<u>CONTENTS</u>

	<u>Page</u>
•	List of Abbreviations
•	List of Figures
•	List of Tables
•	Introduction & aim of work1
•	Review of the literature
	- Non Alcoholic Fatty Liver Disease2
	- Noninvasive assessment of fibrosis in non-alcoholic fatty liver disease and Non- Alcoholic steatohepatitis
	-Important new concepts in the pathogenesis of NAFLD28
	-Diagnosis of Non Alcoholic Fatty Liver Disease40
	-Non-alcoholic fatty liver disease and increased risk of cardiovascular disease
	- Ultrasound and diagnosis of early carotid atherosclerosis64
	-Carotid intima-media thickness by B-mode ultrasound as surrogate of coronary atherosclerosis: correlation with quantitative coronary angiography and coronary intravascular ultrasound findings
•	Patients and Methods88
•	Analysis of the results 91
•	Results and Statistics95
•	Discussion
•	Summary and recommendations130
•	References
•	Arabic Summary

Abbreviations

AASLD: American Association for the Study of Liver Diseases

ACA: anterior cerebral artery

ACA :anterior communicating artery

ACC:acetyl-CoA carboxylase

ACRP30:adipocyte complement related protein of 30 kDa

ALP: Serum alkaline phosphatase **ALT**: Alanine Aminotransferase

AMPK:AMP-activated protein kinase **Anti MDA**: Anti Malondialdehyde

apM1 gene :adipose tissue-specific transcript-1 **ARIC** : Atherosclerosis Risk in Communities

AST :aspartate aminotransferase

bHLH/LZ:basic/helix-loop-helix/leucine zipper

BMI: body-mass index **CAD**: coronary artery disease

Carotid-IMT_{max}: Carotid - intima-media thickness- maximum

CCA : the common carotid artery **CHD** : coronary heart disease

ChoRE: carbohydrate responsive element

ChREBP: Charbohydrate regulatory element binding protein

CRP:C-reactive protein

CT: computed tomographic scanning

CTGF :_connective tissue growth factor **CVD** : coronary vascular disease

CW: continuous wave **CYP**: cytochrome P450 **DS**: Diameter stenosis

ECA :external carotid artery **ECM** :extracellular matrix

ECU: external carotid ultrasound **ELF**: European Liver Fibrosis

FAS: fatty acid synthase **FFA**: free fatty acid **FFAs:** free fatty acids

FHBL: familial hypobetalipoproteinemia

FL: fatty liver

GGT: 7-glutamyltransferase

GK:glucose kinase

GLUT 4:glucose trasporter-4

GPAT:glyceraldehydes 3-phosphate acyltransferase

G6Pase: glucose 6 phosphodehydrogenase

HA: Hyaluronic acid **HCV**: hepatitis C virus **HFE**: hemochromatosis gene **HNE**:.4-hydroxynonenal

HOMA -IR: Homeostasis Model Assessment- estimated insulin

resistance

HSC: hepatic stellatecell **ICA**: the internal carotid artery

IL-8: interleukin-8

IMT: intima-media thickness **INSIG-1:**Insulin-induced gene

IR: insulin resistence

IRS2: insulin resistence substance2IVUS: intravascular ultrasoundLDL: low density lipoprotein.L-PK: liver-type pyruvate kinase

LXR: liver x receptor

MCA: middle cerebral artery

MDA: malondialdehyde

MMP :matrix metalloproteinase

MRA :magnetic resonance angiography MRI :magnetic resonance imaging

MS: metabolic syndrome

NADPH : Nicotinamide adenine dinucleotide phosphate

NAFLD: non-alcoholic fatty liver disease **NASH**: non-alcoholic steatohepatitis

NEFA:Non-esterified fatty acid **NLS:** nuclear localization signal

Ox-LDL: oxidized low density lipoprotein

PAV: percent atheroma volume

PC-1: A membrane glycoprotein that has a role in insulin resistance

PDGF: platelet-derived growth factor

PEPCK: phosphoenol pyruvate carboxykinase

PPARgamma: peroxisome proliferators activated receptor gamma

PRF: pulse recurrence frequency

QCA: quantitative coronary angiography

Rad: ras associated with diabetes **ROS**: reactive oxygen species **SCD-1:**stearoyl-CoA desaturase 1

SREBP-1: sterol regulatoryelement-binding protein-1

TAV: Total atheroma volume

TBARS: thiobarbituric acid-reacting substances

TG: triglecrides

TGF-β: tissue growth factor-beta **TIA:** transient ischemic attack

TIMPs: tissue inhibitors of metalloproteinases

 $TNF\infty$: tumor necrosis factor-alpha

t-PAI :tissue plasminogen activator inhibitor

TZDs: thiozolidindiones

T2DM: type 2 diabetes mellitus **VLDL**: very lowdensity lipoprotein

protein kinase B (Akt),

LIST OF FIGURES

Figure 1.1 :Characteristic Findings of Nonalcoholic Fatty Liver Disease on Liver-Biopsy Specimens
Figure. 1.2: Role of oxygen free radicals (OFR) in NASH 16
Figure 1.3 :shows the relevant pathways in hepatic carbohydrateand lipid metabolism regulated by SREBPs that may be involved in NAFLD29
Figure 1.4: is a schematic figure illustrating regulation of SREBP-1c by cholesterol metabolites and by therapeutic agents.SREBPs and insulin resistance
Figure 1.5: The role of ChREBP and SREBP1c in the hepatic metabolism of glucose
Figure. 1.6: Transcriptional control of glycolysis and lipogenesis33
Figure 1.7: Potential therapeutic targets for treating NAFLD36
Fig. 1.8 : The metabolic parameters of the ob/ob are improved after ChREBP knockdown in liver
Fig. 1.9: Summary of ChREBP knockdown in liver40
Figure 2.1 Box-plot representation of percent flowmediated, endothelium-dependent vasodilation of brachial artery (left) and nitroglycerin-mediated, endothelium- independent vasodilation (right) in control subjects and in NAFLD patients
Figure 3.1 The optimal position for scanning the carotid arteries69
Figure 3.2 Transverse B-mode images. A: CCA and jugular vein. B: The ICA and ECA just above the carotid bifurcation
Figure 3.3 Longitudinal B-mode image of the carotid bifurcation with the ICA and ECA seen in the same plane
Figure 3.4 B-mode image of the ECA showing the superior thyroid branch (arrow)

Figure 3.5 Typical normal Doppler spectra obtained from the CCA (A), the ICA (B) and the ECA (C). The effect of temporal tapping on ECA diastolic flow is marked with arrows
Figure 3.6 A: A color image of an occluded ICA showing flow in the CCA with retrograde flow seen in the stump of the ICA occlusion and an absence of flow in the ICA beyond. B: Doppler spectrum obtained from a CCA proximal to an ICA occlusion showing low-volume High-resistance flow
Figure 3.7 Color image showing a narrow channel of low-velocity flow detected in a subtotal occlusion of the ICA. A low PRF (arrow) is required to detect the low velocity flow
Figure 3.8 Color flow image of the vertebral artery (A) and vein (V) seen between the vertebral processes of the spine (marked by the arrows)75
Figure 3.9 Atheroma removed from the carotid bifurcation during carotid endarterectomy
Figure 3.10 A: Anechoic plaque (arrow) with a thin cap, type 1. B: Type 2 plaque. C: Type 3 plaque. Types 2 and 3 are heterogeneous, with type 3 appearing more echogenic than type 2. D: Homogeneous echogenic plaque, type 4
Figure 3.11 A long-standing ICA occlusion80
Figure 3.12: Color image showing a narrowed proximal ICA. B: Doppler recording obtained from within the narrowing, demonstrating a significant velocity increase (peak systolic velocity 500 cm/s, end diastolic velocity 300 cm/s) with increased spectral broadening, suggesting a significant stenosis (_80% diameter reductions)81
Figure 4.1 Comparison between Waist of studied patients and control
Figure 4.2 Comparison between ALT of studied patients and control
Figure 4.3 Comparison between AST of studied patients and control

Figure 4.4 Comparison between Alkaline phosphatase of studied patients and control
Figure 4.5 Comparison between HDL of studied patients and control
Figure 4.6 Comparison between carotid intima-media thickness of studied patients and control
Figure 4.7 Comparison between Albumin of studied patients and control
Figure 4.8 Comparison between Weight of studied patients in relation to ultrasound fatty infiltration of the liver
Figure 4.9 Comparison between Waist of studied patients in relation to ultrasound fatty infiltration of the liver
Figure 4. 10 Comparison between body mass index of studied patients in relation to ultrasound fatty infiltration of the liver;
Figure 4.11 Comparison between ALT of studied patients in relation to ultrasound fatty infiltration of the liver110
Figure 4.12 Comparison between AST of studied patients in relation to ultrasound fatty infiltration of the liver
Figure 4.1 3 Comparison between Alkaline phosphatase of studied patients in relation to ultrasound fatty infiltration of the liver112
Figure 4.14 Comparison between Cholesterol of studied patients in relation to ultrasound fatty infiltration of the liver
Figure 4.1 5 Comparison between LDL-c of studied patients in relation to ultrasound fatty infiltration of the liver
Figure 4.1 6 Comparison between carotid intima-media thickness of studied patients in relation to ultrasound fatty infiltraton of the liver115
Figure 4.17 Correlation between carotid intima-media thickness and age of studied patients

Figure 4.18 Correlation between carotid intima-media thickness and weight of studied patients
Figure 4. 19 Correlation between carotid intima-media thickness and ultrasound fatty infiltration of studied patients
Figure 4.2 0 Correlation between carotid intima-media thickness and ultrasound portal vein dilatation of studied patients
Figure 4.2 1 Correlation between carotid intima-media thickness and ultrasound splenomegaly of studied patients
Figure 4.2 2 Correlation between carotid intima-media thickness and clinical hepatomegaly of studied patients
Figure 4.23 Correlation between carotid intima-media thickness and AST of studied patients
Figure 4.2 4 Correlation between carotid intima-media thickness and Alkaline phosphatase of studied patients
Figure 4.25 Correlation between carotid intima-media thickness and total cholesterol of studied patients
Figure 4.26 Correlation between carotid intima-media thickness and LDL-c of studied patients
Figure 4.27 Correlation between carotid intima-media thickness and Prothrombin time of studied patients

LIST OF TABLES

page

Table1.1: Grading and staging of The Histopathological lesions of Non Alcoholic Fatty Liver Disease 12
Table I.2 Clinical parameters able to detect liver fibrosis in NAFLD19
Table I.3 Serum markers for detecting any stage of fibrosis in NAFLD.
Table 1.4 Candidate genes involved in NAFLD26
Table 1.5 Adjusted Odds Ratios for Severe Fibrosis (Septal Fibrosis or Cirrhosis)
Table 4.1: Demographic data of control included in the study95
Table 4.2: Laboratory data of control included on the study95
Table 4.3 : Demographic data of studied patients96
Table 4.4: Laboratory data of studied patients96
Table 4.5 : Frequency distribution of demographic data of studied patients
Table 4.6: Comparison between demographic data of studied patients and controls. 97
Table 4.7: Comparison between laboratory data of studied patients and control group. 98
Table 4.8 : Comparison between demographic data of studied patients in relation to ultrasound fatty liver infiltration98
Table 4.9: Comparison between laboratory data of studied patients in relation to fatty liver infiltration

ABSTRACT

A) Title:

 Association between Non Alcoholic Fatty Liver Disease and Early Carotid Atherosclerosis

B) Summary:

• Background:

- Non Alcoholic Fatty Liver Disease is a common cause of elevated liver enzyme and it may increase incidence of increased intimamedia thickness of carotid artery as a marker of early-generalized atherosclerosis due to visceral obesity and dyslipidemia or as apart of metabolic syndrome.

• Objectives :

- To compare between patients with NAFLD known to have negative serology for hepatitis B or C with no history of alcohol or drugs intake with normal level of LDL and control persons with normal Abdominal Ultrasound and normal Liver enzymes to detect the incidence of early carotid atherosclerosis in patient with NAFLD
- Methods: 70 patients and 30 controls will have
 - 1- Full history intake
 - 2- Clinical examination for
 - Blood pressure
 - Body mass index
 - Waist circumference
 - 3- Abdominal ultrasound
 - 4- Hepatitis B and C
 - 5- Liver enzymes
 - 6- Carotid ultrasound
- * Keywords: Non Alcoholic Fatty Liver Disease (NAFLD)

Body Mass Index (BMI)

Low Density Lipoprotien (LDL)

Introduction

Nonalcoholic fatty liver disease (NAFLD), the most common cause of abnormal liver function tests in hepatology practice, is frequently associated with visceral obesity, dyslipidemia, insulin resistance, and type 2 diabetes and may represent another component of the metabolic syndrome. (Ludwig et al.,1980)

Recent cross-sectional studies have shown that NAFLD is associated with increased carotid artery intima-media thickness (IMT), a marker of early generalized atherosclerosis. However, in these studies the NAFLD diagnosis was exclusively based on ultrasound imaging but was not confirmed by liver biopsy, which is the best diagnostic tool for confirming NAFLD. (Powell et al., 1990)

Thus, currently it is uncertain whether there is a significant association between early carotid atherosclerosis and the severity of liver histology among NAFLD patients. Clarification of this aspect may help to explain the underlying mechanisms and may be of clinical importance in planning preventive and therapeutic strategies. (Volzke et al., 2005)

We have, therefore, assessed whether patients with NAFLD have a greater carotid IMT than control subjects and whether there is a significant association between liver histology and carotid IMT among NAFLD patients.

Aim Of Work:

In this study we hope to identify:

- 1-Whether the severity of NAFLD is strongly associated with early carotid atherosclerosis, independent of classical risk factors, insulin resistance, and the presence of metabolic syndrome.
- 2-What are the possible mechanisms by which NAFLD can cause early carotid atherosclerosis.
- 3- Whether improving NAFLD will ultimately prevent the development of Cardiovascular disease (CVD).

Chapter 1

Non Alcoholic Fatty Liver Disease

Introduction:

Nonalcoholic fatty liver disease (NAFLD) is an increasingly recognized condition that may progress to end-stage liver disease. The pathological picture resembles that of alcohol-induced liver injury, but it occurs in patients who do not abuse alcohol. A variety of terms have been used to describe this entity, including fatty-liver hepatitis, nonalcoholic Laënnec's disease, diabetes hepatitis, alcohol-like liver disease, and nonalcoholic steatohepatitis. (Ludwig et al.,1980)

The spectrum of NAFLD:

The NAFLD spectrum is thought to begin with and progress from its simplest stage, called simple fatty liver to more advanced stage, steatosis. That is, fatty liver is the initial abnormality in the spectrum of NAFLD. Simple fatty liver involves just the accumulation of fat in the liver cells with no inflammation or scarring. The fat is actually composed of a particular type of fat (triglyceride) that accumulates in tiny sacs within the liver cells. This accumulation of fat in liver cells is not the same as the fat cells (adipocytes) that constitute our body fat. Fatty liver is a harmless ,benign condition, which means that it, by itself, does not cause any significant liver damage. (Schaffner and Thaler, 1986).

The next stage and degree of severity in the NAFLD spectrum is Non Alcoholic Steatohepatitis (NASH). Fortunately, only a fraction of patients with simple fatty liver will develop NASH. As mentioned, NASH involves the accumulation of fat in the liver cells as well as inflammation of the liver. The inflammatory cells can destroy the liver cells (hepatocellular necrosis). In the terms "steatohepatitis" and "steatonecrosis", *steato* refers to fatty infiltration, hepatitis refers to inflammation in the liver and necrosis refers to destroyed liver cells. Strong evidence suggests that NASH, in contrast to simple fatty liver, is not a harmless condition.