Functional Properties of Selected Ingredients of Some Food Stuffs.

By Safaa Moustafa Abd El Fatah Faid

B.Sc. Fac. of Specific Education (1995)M.Sc. (2002); Food Sci. and Nutrition.Faculty of Specific Education.Ain Shams University

A thesis submitted in partial fulfillment of

The requirements for the degree of

DOCTOR OF PHILOSOPHY

in Home Economics

(Food Science and Nutrition)

Department of Home Economics
Faculty of Specific Education
Ain Shams University

2005

Approval Sheet

Functional Properties of Selected Ingredients of Some Food Stuffs.

By

Safaa Moustapha Abd El Fatah Faid

B.Sc.(Home Economics Dept.) Faculty of Specific Education, Ain shams University (1995)

M.Sc.(Food Science and Nutrition) Faculty of Specific Education, Ain shams University, (2002)

This thesis for Ph.D. degree has been approved by:

Prof. Dr. M Amin. Abd-Allah

Prof. of Food Sci; Food Science Dept. Faculty of Agric. Ain Shams University. (Former Dean of the Faculty of Specific Education (1994-1997).

Prof. Dr. Farouk M. El Tellawy

Prof. of Food Science and Technology. Chairman of the Home Economics Dept., Faculty of Specific Education, Ain Shams University.

Prof. Dr. Sanaa M. El Bendary

Prof. of Nutrition and Vice Dean of the Faculty of Specific Education Ain Shams University.

Prof. Dr. Mohamed Youssef

Prof..of Food Science.Food Science and Technology Dept. Fac. of Agric., El- Shatby.Univ. of Alexandria.

Prof. Dr. Yehia Heikal

Prof. of Food Engineering Food Sci. Dept. Fac. of Agric Ain Shams University.

Date of Examination: 3 / 8 / 2005

Functional Properties of Selected Ingredients of Some Food Stuffs.

By **Safaa Moustapha Abd El Fatah Faid**

Assistant Lecturer; Home Economic Dept., Fac. of Specific Education-Ain Shams University

Under the Supervision

Prof. Dr. M Amin. Abd-Allah

Prof. of Food Sci; Food Sci. Dept., Faculty of Agric. Ain Shams University. (Former Dean of the Faculty of Specific Education (1994-1997).

Prof. Dr. Farouk M. El Tellawy

Prof. of Food Science and Technology .Chairman of the Home Economics Dept., Faculty of Specific Education, Ain Shams University

Prof. Dr. Sanaa M. El Bendary

Prof. of Nutrition and Vice Dean of the Faculty of Specific Education Ain Shams University.

Dr. Magda Ali Rakha

Under Secretary of State, Central Heath Labs for Laboratory Services, Ministry of Health and Populations

ACNOWLEDGEMENT

I would like to express my deepest gratitude and appreciations to **Prof. Dr. M. Amin Abd** – **Allah**, Professor of Food Science, Food Sci. Dept.,

Faculty of Agriculture. Ain Shams University and the Former Dean of the

Faculty of Specific Education (1994 – 1997), for offering valuable suggestion

and advising in planning through the supervising of the thesis.

I would like to offer my especiall thanks to **Prof. Dr. Farouk El-Tellawy**, Professor of Food Science and Technology and Chairman of the Home Economics Dep., Fac . of Specific Education, Ain Shams University for supervising , following up the work , helps and support during the preparation and finishing of this study .

Words can never express my heartily thanks to **Prof. Dr. Sanaa El** – **Bendary**, Prof. of Nutrition, and Vice Dean; Faculty of Specific Education; Ain Shams University, for supervising, following up, and completion of the work.

I wish also to offer my deeply grateful to **Dr. Magda Ali Rakha** of Under Secretary of State, Central Heath Labs for Laboratory Services, Ministry of Health and Populations for supervising and help offered through analyzing samples that giving me the power to complete this work.

Thanks are given to the Dept of Home economics for giving me the chance to achieve such Ph.D. program.

My deepest thanks are also extended to the private companies for the facilities given through the work:

- National Company for Producing Corn products .10th of Ramadan City.
- Cadbury Egypt Group for Food Industries Company.10th of Ramadan City .
- Abo El- Dahab Milling Company, 6th of October City.

CONTENTS

	Page
List of Tables	xiii
List of Figures	xix
List of Abbreviations	xxii
Introduction	1
Review and literature	7
Part I: Major and minor chemical constituents of the	7
investigated samples .	
1- Major constituents	7
I:1- Moisture	7
1:2- Crude and dietary fibre.	8
1:3- Protein content	8
1:4- Carbohydrates and ascorbic acid (Vitamin C).	10
2- Minor constituents	11
2:1- Minerals and heavy metals	11
2:2- Amino acids	13
2:3- Fatty acids	14
Part II: Physicochemical aspects of ingredients of the tested	17
food stuffs.	
2:1- Water absorption and sorption isotherm.	17
2:2- Watability and water activity	18
2:3- Bulk density, Foaming capacity and emulsion.	19
2:4- Rehydration, modulus of fineness and viscosity properties.	23
Part III: Specified parameters measured in the tested samples	25
(pesticide residues and nitrate)	
3 : 1- Pesticide residues	25
3 :2- Nitrate content.	28
Part I V: Threshold pattern of the predominant groups main	31
ingredients in the tested samples.	
4:1- Predominant groups in meat products.	31
4 :2- Predominant groups in legumes and vegetable.	34

Part V: Technological aspects and organoleptic evaluation of	36
the tested samples .	
Materials and methods	41
Materials	41
Methods	42
I- Technological methods	42
I:1- Kishk samples .	42
I:2- Cake sample.	44
I:3- Faba bean paste (Bosara)	46
II-Analytical methods	47
2:1- Chemical analysis.	47
2:1:1- Moisture, ash, minerals, heavy metals, fat, protein	47
and crude fiber.	
2:1:2- Amino acids .	48
2:1:3- Fatty acids.	49
2:2- Physical analysis	50
2:2:1- Water adsorption	50
2:2:2- Sorption isotherm	50
2:2:3- Wettability	51
2:2:4- Water activity "aw"	51
2:2:5- Bulk density	51
2:2:6- Foaming capacity and foaming stability	51
2:2:7- Emulsion capacity and stability	52
2:2:8- Gelation properties	52
2:2:9- Rehydration ratio	52
2:2:10- Modulus of fineness.	53
2:2:11- Viscosity.	53
2:3- Pesticide residues	54
2:4- Infrared spectrum (functional groups)	54
2:5- Sensory evaluation of the proposed samples	54
III- Statistical analysis in term of Regression and analysis of	55
variance	

Results and discussion	56
Part I: Major and minor constituents of the investigated samples	56
1-Major constituents.	56
I:1- Moisture.	56
1:2- Carbohydrate contents.	58
1:3- Ether extract and protein content:	64
1:4- Ash and crude fibers.	68
1:5- Minerals and heavy metals.	70
1:5:1- Minerals:	70
1:5:2- Heavy metals.	77
2- Minor constituents.	82
2:1- Specified parameters based on amino acids.	82
2:1:1- Amino acids and ideal protein concept.	82
2:1:2- Essential amino acids :	86
2:1:3- Biological evaluation :	88
2:1:4- Side chains amino acids :	89
2:2- Fatty acids.	93
2:2:1- Saturated and mono unsaturated fatty acids:	93
2:2:2- Identified poly unsaturated fatty acids:	96
2:3- Ascorbic acid (vitamin C):	98
Part II: Physicochemical aspects of ingredients of the tested food	102
stuffs.	
2:1- Water absorption:	102
2:1:1- Water absorption in green bean and lentil.	102
2:1:2- Water absorption in germinated faba bean and	103
fenugreek.	
2:1:3- Water absorption in kaki and strawberry.	104
2:2- Sorption isotherm in:	106
2:2:1- Sorption isotherm in luncheon and sausage.	106
2:2:2- Sorption isotherm in lentil and green bean.	108
2:2:3- Sorption isotherm in kaki and strawberry.	110
2:2:4- Sorption isotherm in germinated faba bean and	111

fenugreek.	
2:3- Wetability.	114
2:4- Water activity.	116
2:5- Bulk density.	120
2:6- Foaming capacity.	122
2:7- Emulsification .	129
2:8- Gelation properties.	134
2:9- Rehydration Ratio.	135
2:9:1- Rehydration of luncheon and sausage.	135
2:9:2- Rehydration of kaki and strawberry.	138
2:9:3- Rehydration of legume samples (lentil, green bean,	141
germinated fenugreek and germinated faba bean).	
2:10- Modulus of the tested samples.	145
2:10:1- Modulus of fineness in lentil and green bean .	145
2:10:2- Modulus of fineness in kaki and strawberry.	147
2:10:3- Modulus of fineness in germinated faba bean and	149
fenugreek.	
2:10:4- Comparison between coarse, medium and fine	151
2:11- Flow rate:	152
2:11:1- Flow rate of luncheon and sausage.	153
2:11:2- Flow rate of kaki and strawberry.	156
2:11:3- Flow rate of legume samples (lentil, green bean, g.	158
fenugreek, g. faba bean).	
Part III: Specified parameters measured in the tested samples.	163
3:1- Pesticide residues in the investigated samples	163
3:1:1- Pesticide residues in luncheon and sausage	163
3:1:2- Pesticide residues in kaki and lentil	168
3:1:3- Pesticide residues in green bean and strawberry	171
3:1:4- Pesticide residues in germinated fenugreek and	175

180

182

germinated faba bean.
3:2- Nitrite content of the tested samples .

3:2- Ascorbic acid oxidase enzyme (AAO) in the investigated

samples .

Part IV: Functional groups presented in the tested samples .	189
4:1- Functional groups in luncheon and sausage samples.	191
4:2 - Functional groups in lentil and green bean samples.	196
4:3 - Functional groups in kaki and strawberry samples.	199
4:4 - Intensities and functional groups in germinated and	202
ungreminated fenugreek samples.	
4:5- Intensities and functional groups in the tested germinated	205
and ungerminated Faba bean	
Part V: General discussion	208
Scientific bases used for formulating and manufacturing of the	208
suggested functional foods.	
5:1- Technochemical properties	219
5:2- Ascorbic acid oxidase enzyme of the processed samples.	222
5:3- Emulsion	226
5:4- Functional groups of the processing samples	228
5:4:1- Functional groups of kishk samples	228
5:4:2- Functional groups of <i>cake</i> samples	230
5:4:3- Functional groups of Faba bean paste (Bosara) samples	233
5:5- Organoleptic test in the processed samples.	236
5:5:1- Organoleptic tests for <i>kishk</i> samples.	236
5:5:2- Organoleptic tests for <i>cake</i> samples.	240
5:5:3- Organoleptic tests for Faba bean paste (Bosara) samples.	247
Summary and Conclusion	251
Guide line for recommendation	267
References	268
الملخص العربي	1

List of TABLES

No		Page
A	Suggested recipes for manufacturing a control and a suggested <i>kishk</i> samples.	42
В	The <i>cake</i> samples were prepared in the form of control and suggested recipes as follows:	44
C	Suggested recipes for manufacturing a control and a suggested faba bean paste (<i>Bosara</i>) samples.	46
1	Moisture content of the fresh and dried samples under investigation.	57
2	Identified Sugars in the investigated samples (values are given as area % of HPLC chromtagram.	59
2-A	One-way anova of fructose; dextrose; maltose; maltotriose and polysaccharides in the tested samples.	59
3	Ether extract and Protein content of the investigated samples (g/100g dry).	65
4	Ash and crude fiber contents of the investigated samples.	69
5	Minerals content in the tested samples.	72
5-A	Analysis of varience within the identified minerals and the tested samples.	75
6	Heavy metals content in the investigated samples.	79
6 - A	Statistical pattern in terms of comparison between the investigated samples.	81
7	The ideal protein concept and the available energy of identified amino acids in the tested samples.	84
7 - A	Analysis of variance of both ideal protein concept and amino acids of the tested samples.	85
8	Essential amino acids (g/100g dry matter of protein) of luncheon and sausage of the tested samples.	87
9	Protein efficiency ratio and protein quality of luncheon and sausage samples.	88
10	Uncharged and charged side chains amino acids of the luncheon and sausage samples	90

11	Identified saturated and mono unsaturated fatty acids of the oil content extracted from edible portion of the tested luncheon and sausage samples.	94
12	Identified poly unsaturated fatty acids (polyenoic) in the oil content extracted from the edible portion of tested samples.	97
13	Level of vitamin C in the investigated samples. (mg / 100 g).	99
14	Water absorbtion ($g H_2O/2g$ sample) of the investigated green bean and lentil samples.	103
15	Water absorbtion (g $\rm H_2O/2g$ sample) of the germinated faba bean and fenugreek samples.	104
16	Water absorbtion (g $H_2O/2g$ sample) of kaki and strawberry samples .	105
17	Sorption isotherm (g $H_2O/2g$ sample) of the tested luncheon and sausage samples .	107
18	Sorption isotherm (gH ₂ O/2g sample) of the tested lentil and green bean samples under investigation.	109
19	Sorption isotherm ($gH_2O/2g$ sample) of the tested kaki and strawberry samples under investigation.	110
20	Sorption isotherm (gH ₂ O/2g sample) of the tested germinated fenugreek and faba bean samples.	112
21	Wetability in terms of (min/0.1 g sample) of the samples under investigation.	115
21-A	ANOVA: sausage; lentil; green bean; strawberry; germinated fenugreek and germinated faba bean.	116
22	Water activity for the tested samples.	118
23	Measurements of bulk densities of the investigated samples (g/ ml)	121
24	Foaming capacity and foam stability cm/ml of the tested samples.	123
24-A	Principal component analysis and regression analysis of the foaming properties of the tested samples within 180 min.	125

25	Emulsion pattern of the tested samples measured (over 100% of transmittance level).	130
26	Least gelation concentration (%) of the investigated	135
27	samples. Rehydration pattern of the investigated luncheon and sausage samples.	136
27-A	Regression analysis based on multiplicative modlel for the relation between rehydration and time in meat products.	137
27-В	Regression analysis based on multiplicative modlel for the relation between rehydration and time.	138
28	Rehydration pattern of the investigated kaki and strawberry samples.	139
28-A	Regression Analysis based on multiplicative modlel for the relation between rehydration and time in fruit and vegetable.	140
29	Rehydration Pattern for the legume samples under investigation .	142
29-A	Regression Analysis based on multiplicative modlel for the relation between rehydration and time in legumes samples.	143
29-B	Regression analysis based on multiplicative model for the relation between rehydration and time in the tested germinated fenugreek sample.	144
30	Modulus of fineness and modulus of uniformity of legume samples under investigation.	146
31	Modulus of fineness and modulus of uniformity of kaki and strawberry samples.	148
32	Modulus of fineness and modulus of uniformity of the tested germinated samples.	150
33	Comparison between modulus of fineness and modulus of uniformity of all of the tested samples.	151
34	Flow rate of different concentration of luncheon and sausage samples under investigation.	154

34-A	Rgression analysis between KH ₂ PO ₄ concentration and time in sec	155
35	Non Newtonian fluidity of strawberry and kaki samples.	157
36	Flow rates ,specific and reduced viscosities of the tested	160
30	legumes samples.	100
36-A	Regression Analysis: CON% versus time of legumes	161
	samples in sec.	
37	Pesticide residues identifed in the luncheon sample.	164
38	Pesticide residues identified in the sausage sample.	166
39	Pesticide residues identified in the lentil sample.	169
40	Pesticide residues identified in the green bean sample.	172
41	Pesticide residues identified in the strawberry sample.	173
42	Pesticide residues identified in the germinated fenugreek sample.	175
43	Pesticide residues identified in the germinated Faba bean sample.	177
44	Nitrite content (mg/ kg sample) analyzed within the investigated samples.	181
45	Activity of ascorbic acid oxidase enzyme (AAO) based on vitamin C content of the investigated samples	183
45-A	Statistical analysis of ascorbic acid oxidase enzyme in	184
	terms of linear regression of the residual amount of	
	ascorbic acid in the tested samples.	
46	Intensities and functional groups identified in the tested	194
	luncheon and sausage samples.	
47	Intensities and functional groups identified in the tested	197
	lentil and green bean samples.	
48	Intensities and functional groups identified in kaki and	200
	strawberry samples under investigation .	
49	Intensities and functional groups identified in germinated	203
	and ungerminated fenugreek samples.	
50	Intensities and Functional groups identified in germinated	206
	and ungerminated broad bean samples.	

51	Accumulated major constituents analyzed in the	210
	investigated food samples.	
52	Accumulated functional parameters applied in the	215
	investigated food samples.	
53	Improvement of functional groups as a function of the	218
	application of the suggested recipes.	
54	Improvement level in selected parameters in the tested	220
	samples.	
55	Activity of ascorbic acid oxidase based on the	223
	concentration of vitamin C content of the investigated	
	samples.	
55-A	Regression analysis of ascorbic acid oxidase based on the	224
	residual amounts of ascorbic acid in the tested samples.	
56	Emulsion for the processing samples.	226
57	Comparison between the intensity and functional groups of	228
	the tested <i>kishk</i> samples.	
58	Comparison between the intensitiy and functional groups of	231
	the tested <i>cake</i> samples.	
59	Comparison between the intensitiy and functional groups of	234
	the tested Faba bean paste (Bosara).	
60	Organoleptic evaluation of the investigated kishk sample.	237
60-A	ANOVA: Colour; Appearance; Flavour; After Taste;	239
	Aroma; Overall Acceptabilty and Structure in kishk sample	
61	Organoleptic evaluation of the cake sample under	241
	investigation.	
61-A	ANOVA: Colour; Appearance; Flavour; After Taste;	242
	Aroma; Overall Acceptability and Height in <i>cake</i> sample.	
62	Organoleptic evaluation of the Faba bean paste (Bosara)	248
	sample.	
62-A	Correlations between Colour; Appearance; Flavour; After	249
	Taste; Aroma; Overall acceptability and structure in faba	
	bean paste (Bosara) sample.	

List of FIGURS

No		Page
1	Moisture content of the fresh and dried samples	58
	under test	
2	HPLC profiles of sugars identified in the tested meat	60
	, fruit and vegetable samples.	
3	HPLC profiles of sugars identified in the tested	61
	legumes.	
4	Ether extract and protein content for the tested	66
	samples	
5	Ash and crude fiber of the tested samples.	69
6	Mineral levels in the tested samples in terms of their	74
	No.of folds of the responded highest level.	
6-A	Distribution of the tested minerals within the tested	76
	samples based on principal components analysis	
7	Heavy metals content (mg/100g dry sample) in the	80
	tested samples.	
8	Comparision between the available energy	86
	(K.cal/mol) of the identified amino acids within the	
	tested samples.	
9	Uncharged and charged side chains amino acids of	91
	luncheon and sausage.	
10	Identified saturated and mono unsaturated fatty acids	95
	of the tested samples.	
11	Identified poly unsaturated fatty acids (poly enoic in	98
	the oil extracted from luncheon.	
12	Level of vitamin C in the tested samples	100
13	Average of sorption isotherm of luncheon and	108