The Role of Double Negative (CD²- CD³-) T Cells in Chronic Hepatitis B Virus Infection

Thesis

Submitted for Partial Fulfillment of Master. Degree

By

Olfat Elsayed Helmy

MB BCh Faculty of Medicine
Mansoura University

Supervised by

Professor / Hala Ahmed Talkhan

Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Doctor / Amal Ahmed Abass

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Doctor / Dina Elsayed El-Shinnawy

Lecturer of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University

List of Abbreviations

A nucleotide Adenine nucleotide

ALPS autoimmune lymphoproliferative syndrom

ALT Alanine aminotransferase
Anti-HBc Anti hepatitis B core antibody
Anti-HBs Anti hepatitis B surface antibody

APC Antigen presenting cell
CCR° chemokine receptor °
CD Cluster of Differentiation

CMV cytomegalo virus

CTL Cytotoxic T lymphocyte

CTLA- Cytotoxic T-lymphocyte associated antigen- 5

DC cell Dendritic cell

DNT double-negative T cells

DR Direct repeatsEBV Epstein-Barr virusER Endoplasmic reticulum

FasL Fas Ligand

FCER γ Fragment crystallizable immunoglubulin E receptor gamm FoxP γ Forkhead/winged helix transcription factor on T_{reg} cells

GPCR G-protein coupled receptor
GVHD Graft-versus-host disease
HBcAg Hepatitis B core antigen
HBeAg Hepatitis B envelope antigen
HBsAg Hepatitis B surface antigen

HBV Hepatitis B virus

HCC Hepatocellular carcinoma

HCV Hepatitis C virus

HIV Human immune deficiency virus

HLA Human leucocyte antigen

indole aminem ',' dioxygenase

IFN Interferon

IFN-α/β Interferon alpha/beta

List of Abbreviations

IFN-γ Interferon gamma **IL-**γ Interleukin-γ

IL-γR Interleukin-γ receptorLGL Large granular lymphocyte

LN Lymph node

LSEC liver sinusoidal endothelial cells

mDC cell Myeloid dendritic cell

MHC major histocompatibility complex

mRNA messenger RNA

NALT nasal-associated lymphoid tissue

NK cell Natural killer cell
NKT cell Natural killer T cell
P gene Polymerase gene

PCR Polymerase chain reaction
PD-1 Programmed death-1

pDC cell Plasmacytoid dendritic cell
PD-L\ Programmed death ligand-\
PRR Pattern recognition receptor
SLE Systemic lupus erythematosus

TCR T cell receptor

TGF- B Transforming growth factor-B

Th' cell T helper-' cell
Th' cell T helper-' cell

TNF- α Tumour growth factor- α

Treg cells Regulatory T cells

List of Tables

Table	Title					
١	Geographical Distribution of HBV Genotypes					
۲	Characteristics of Chronic Hepatitis B at Different Stages					
٣	The following table summarizes the various hepatitis B tests and their uses					
٤	The Phenotypes of Treg Subsets					
0	Distinctive profile of expression of surface immune proteins by CD ^{\(\xi\)} -\(\Lambda\)- T cells					
٦	Comparison between cases and control regarding the age					
٧	Comparison between cases and control regarding the sex					
٨	Comparison between cases and control regarding liver enzymes ALT and AST levels					
٩	Comparison of the percentage of (DN) T Reg cells between cases and control	١.٧				
١.	Comparison between replicating CHB group and non replicating group, as regard ALT levels					
11	Comparison between the replicating CHB group and the non replicating group, as regard the degree of viremia	11.				
١٢	Comparison between the replicating CHB group and non replicating group, as regard the percentage of CD [£] -CD ^A - double (DN)T reg cells.	111				
١٣	Comparison between CHB patients with mild viremia and with moderate to severe viremia regarding the percentage of (DN)T reg cells	١١٢				
١٤	Comparison between CHB patients on treatment versus those who are not regarding the percentage of (DN)T reg cells	١١٣				
10	Comparison of the percentage of (DN)T reg cells in CHB patients with different treatment duration	١١٣				

List of Figures

Fig.	Title					
١	A simplified drawing and electron micrograph of the	0				
	HBV particle and surface antigen					
۲	Representation of hepatitis B virus (HBV) genome					
٣	Domains of HBV surface proteins					
٤	The Replication cycle of HBV					
٥	Natural History of HBV Infection					
٦	The progression from acute to chronic HBV infection	٣٤				
٧	Immunoregulatory functions of hepatic natural killer T (NKT) cells					
٨	The cytokine/chemokine cascade through which NK cells recruit T cells					
٩	Cellular immune responses to HBV	٤٥				
١.	DCs are the most potent APCs	٤٧				
11	Schematic figure of how the BY-HY/ PD-Y pathway	0 8				
	may mediate the exhaustion of virus-specific T cells in					
	chronic HBV infection	٥٦				
١٢	Causes of HBV-specific T-cell tolerance					
١٣	Different mechanisms of Treg suppressio					
١٤	Treg population in the peripheral blood					
10	Gender distribution in cases and control					
١٦	BOX PLOT diagram comparing ALT levels between cases and control	١٠٤				
١٧	BOX PLOT diagram comparing AST levels between cases and control	١٠٤				
١٨	The percentage of (DN) T Reg cells among the control group	1.0				
19	The percentage of (DN) T Reg cells among the cases group					
۲.	Correlation between the ALT level and percentage of (DN)T reg cells among patient group.	١٠٨				
۲۱	Correlation between the AST level and percentage of (DN) T reg cells among patient group	١٠٨				

أهمية الخلايا الليمفاوية تى المزدوجة السلبية (سى دى- ٤، سى دى- ٨) في مرض الالتهاب الكبدي الوبائي المزمن ب

رسالة توطئة الحصول على درجة الماجستير في الباثولوجيا الإكلينيكية والكيميائية مقدمة من

الطبيبة / ألفت السيد حلمي سالم بكالوريوس الطب والجراحة العامة كلية الطب ـ جامعة المنصورة

تحت إشراف

الأستاذ الدكتور / هالة أحمد طلخان

أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب ـ جامعة عين شمس

الدكتور / أمل أحمد عباس

أستاذ مساعد الباثولوجيا الإكلينيكية والكيميائية كلية الطب ـ جامعة عين شمس

الدكتور / دينا السيد الشناوي

مدرس الباثولوجيا الإكلينيكية والكيميائية كلية الطب ـ جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٢

List of Contents

	Page
List of abbreviations	I
List of tables	III
List of figures	IV
Introduction	١
Aim of the work	٣
Chapter I: Hepatitis B Virus Infection	٤
Chapter II: Regulatory T-cells (Tregs).	٥٧
Chapter III: Double Negative DN Treg cells Origin and development of DN Treg cells	٧٤
Subjects and Methods	97
Results	1.1
Discussion	115
Summary	177
Conclusion	170
Recommendation	١٢٦
References.	١٢٧
Arabic summary	

Thanks are given to **ALLAH** the source of all knowledge for blessing this work till it has come to an end.

I would like to express my deepest thanks to **Prof. Dr. Hala Ahmed Talkhan,** Professor of Clinical Pathology,

Faculty of Medicine, Ain Shams University, for her kind support guidance and valuable remarks. I am profoundly grateful for her continuous close supervision and constant help.

I would also like to express my deepest thanks and gratitude to **Prof. Dr. Amal Ahmed Abass,** Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her generous help, continuous encouragement and stimulating remarks throughout the study.

I would also like to express my great gratitude to **Dr**. **Dina El-Sayed El-Shennawy**, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University for her valuable comments, knowledge, experience and hand necessary for achieving this work.

I would like to thank my husband who encouraged and supported me all the time, to him I dedicate this work.

Introduction

Hepatitis B virus infection is a serious global health problem. It has been estimated that "on million people worldwide are chronic hepatitis B carriers with nearly one million deaths per year (*Lavanchy*, "…').

Hepatitis B is noncytopathic, DNA virus transmitted sexually, parenteraly and from mother to fetus at birth *(Chisari, ۱۹۹۰)*. Infection with hepatitis B virus leading to a wide spectrum of clinical presentation ranging from an asymptomatic carrier state to self-limited acute or fulminant hepatitis to chronic hepatitis with progression to hepatocellular carcinoma (HCC) *(Baumert et al., Y., Y.)*.

Hepatitis B virus clearance is mediated by a vigorous HBV specific, human leucocyte antigen (HLA)class I restricted cytotoxic T- lymphocytes (CTL) response (Roh et al., Y...). Thus, viral persistance or chronicity is associated with an inadequate CTL response to the virus (Stoop et al., Y...).

Recent studies have demonstrated that in peripheral lymphoid tissues of normal mice and healthy humans, 1% - 0% of alpha beta T cells receptors positive are CD^{\(\xi\)}- CD^\(\text{-}\) double negative T cells which are capable of down regulating immune responses. However its origin and developmental pathway is still unclear (*Zhang et al.*, \(\text{\cdot}\).

Double negative T regulatory (T reg) cells are capable of down regulating immune response via direct killing of effector T cells in an antigen specific manner, furthermore, double negative T reg cells have shown to develop regulatory mediated function by acquisition of MHC peptide complexes from antigen presenting cells (APCs). The presentation of alloantigen on double negative T reg cells allows for specific interaction between double negative T reg cells and alloantigen reactive T cells. Once the double negative T reg cells have come into contact, killing is then mediated by fas/ fas ligand interaction and perhaps through unidentified pathways (*Chen et al.*, Y · · ² and Fischer et al., Y · · °).

۲

Aim of the Work

The aim of this work is to evaluate the role of double negative T cells in chronic HBV infection as a cause of persistence and thus chronicity.

٣

Hepatitis B Virus Infection

Hepatitis B virus infection (HBV) is a serious health problem worldwide. It is one of the most common infectious diseases globally. It is estimated that approximately 'billion people have serological evidence of past or present infection with more than or million new infections occurring yearly. More than 'co million are chronic carriers of HBV and occurrent to 'co' million die from HBV infection annually (Wright, rect).

HBV Structure:

HBV is a prototype member of the Hepadnaviridae family, Hepa from hepatotrophic and dna because it is a DNA virus (hepatotropic DNA viruses). The mature virion, also known as Dane particle, is first nm in diameter consisting of an outer lipoprotein layer that encodes the viral envelope proteins, the hepatitis B surface antigen (HBsAg), and surrounds a nucleocapsid core, the hepatitis B core antigen (HBcAg), the nucleocapsid contains the viral genome and viral polymerase. The viruses replicate through RNA intermediate form by reverse transcription, and in this respect they are similar to retroviruses. Although replication takes place in the liver, the virus spreads to the blood (Fig.) (Bergua et al., 4). In addition to the mature virions, HBV infected serum contains two other distinct subviral particles that are either spherical or filamentous in shape and are approximately '\ nm in width. Subviral particles reach a vicin fold higher