Age Dependent Immunomodulation, Genotoxicity and Oxidative Stress due to Pesticide Mixture Exposure and Protective Potential of Antioxidants in Albino Rats

Thesis

Submitted in partial fulfillment for the MD degree in forensic medicine and clinical toxicology

By

Mustafa Mohsen Mustafa Afify

Assistant Lecturer of Forensic Medicine And Clinical Toxicology Faculty of medicine - Beni Sueif University

Under supervision of

Prof. Dr. Aly Gamal Eldin Abd El-Aal

Professor of Forensic Medicine
And Clinical Toxicology
Faculty of Medicine – Cairo University

Prof. Dr. Dina Ali Shokry

Professor and Head of Forensic Medicine And Clinical Toxicology Department Faculty of Medicine – Cairo University

A. Prof. DR. Manal El -Sayed El-Halwagy

Assistant Professor of Biochemistry Mammalian toxicology Department Central pesticide laboratory

Dr. Mohamed Adly Mohamed

Lecturer of Forensic Medicine And Clinical Toxicology Faculty of Medicine – Cairo University

> Faculty of Medicine Cairo University 2009

Abstract

This thesis was designed to study dose-related and age-related effects of the mixture of four pesticide residues extract (chloropyrifos, profonofos, fenitrothion and dicofol) on Oxidative Stress, Genotoxicity and immunotoxicity, and Protective Potential of natural Antioxidants (garlic 250 mg/kg and alpha lipoic acid 60mg/kg), 120 males of Albino rats will be divided into two main groups according to age; weaning group (2) months age) and Adult group (6 months age). Each age group of rats were divided into 6 subgroups (10 rats in each) the 1st group served as control, the 2nd&3rd groups were orally treated with high & low level of pesticides residue mixture, respectively, the 4th group served as +ve control (antioxidants only), the 5th &6th groups were orally treated with antioxidants 1h after administration of high & low level of pesticides residue mixture, respectively, All groups were force-fed by gastric intubations 5 days per week for 3 months. The oxidative stress status of treated animals has been evaluated by assessment of reduced glutathione (GSH), Glutathione-S-Transferase (GST), malondialdehyde (MDA). In addition, the acetylcholinesterase (AChE) activity was measured as a biomarker of toxicity. The mean comet tail length and Comet DNA % were used to measure DNA damage. We used IgG, IgM, rate of leucocyte phagocytosis and of lymphocyte transformation as immunotoxicological biomarkers to test the immune function as well as Histopathological studies in lymph node. Our result revealed that pesticide mixture induce inhibitory effect on AChE, depletion in GSH content, alteration in GST and elevation in lipid peroxidation (MDA). A significant increase in mean comet tail length and Comet DNA % indicating DNA damage was observed. The damage was dose related. The results showed that pesticides mixture produced a decrease in Both IgG and IgM, the rate of lymphocyte transformation and the rate of leucocyte phagocytosis also decrease in both age groups. In additions, our result revealed that natural antioxidants (ALA and garlic extracts) have more or less counteracting effect on Oxidative Stress, Genotoxicity and immunotoxicity caused by pesticides.

(**Key words**: pesticide residues, acetylcholinesterase, Oxidative Stress, lipid peroxidation, Genotoxicity, comet assay, immunotoxicity, lymphocyte transformation, phagocytosis)

ACKNOWLEDGEMENT

First of all greatest thanks and merciful to Allah, the great creator and the source of all man's knowledge.

I would like very much to express my deepest gratitude and sincere thanks to <u>Prof. Dr. Aly Gamal El-Din</u> Professor of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, for his fatherly attitude, sincere encouragement, valuable guidance, kind supervision and scientific support.

Wording is not enough to express my sincere gratitude and deep appreciation to <u>Prof. Dr. Dina Ali Shokry</u> Professor and Head of Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, for the idea and planning of this work, her efficient and indispensable help, faithful guidance and willing efforts to facilitate the difficulties during this work.

I offer my great appreciation and thanks to <u>A. Prof. Dr. Manal El-Sayed El-Halwagy</u> Assistant Professor of Biochemistry, Mammalian toxicology Department. Central pesticide laboratory for her meticulous supervisions, sincere guidance, significant input and kind help in every step of this work.

Thanks to <u>Dr. Mohamed Adly Mohamed</u>. Lecturer of Forensic Medicine and Clinical Toxicology, Faculty of Medicine. Cairo University for his supervision and encouragement.

I wish also to express my sincere thanks to <u>Prof. Dr. Nevine Darwish</u> Professor of pathology. Research institute of ophthalmology, for her support in the Histopathological part of this work, and for her valuable advices

Thanks to <u>Dr. Sanaa El Sawi</u>, Researcher in Central laboratory for analysis of pesticide residues and heavy metal in food, for her help.

Last, but not least, my deep thanks and gratitude to all my professors and my colleagues and to my family for their kind support and encouragement.

Mustafa M. Afify

This work is dedicated

TO SOUL OF MY FATHER

TO MY MOTHER

TO MY WIFE

AND

TO MY KID

TABLE OF CONTENTS

Title	Page
LIST OF ABBREVIATIONS	i
LIST OF FIGURES	iii
LIST OF PHOTOMICROGRAPH	V
LIST OF TABLES	viii
I- INTRODUCTION AND AIM OF WORK	1
II- REVIEW OF LITERATURE	
Chapter (1) <u>PESTICIDE</u>	6
• WHAT IS A PESTICIDE?	J
• HISTORICAL REVIEW OF PESTICIDE	6
• CLASSIFICATION OF PESTICIDES	6
• PESTICIDE RESIDUES	8
• ORGANOPHOSPHATE PESTICIDE	10
• ORGANOCHOLRINE PESTICIDE	16 33
Chapter (2) PESTICIDE AND OXIDATIVE STRESS	
• FREE RADICALS AND OXIDATIVE STRESS	37
• ANTIOXIDANT DEFENSES	40
• PESTICIDE-INDUCED OXIDATIVE STRESS	44
• ALPHA LIPOIC (ALA) AND GARLIC AS NATURAL ANTIOXIDANTS	47
Chapter (3) <u>PESTICIDE AND GENOTOXICITY</u>	
• PESTICIDE-INDUCED GENOTOXICITY	52
• THE COMET ASSAY	55

Chapter (4) <u>PESTICIDE AND IMMUNOTOXICITY</u>		
• THE IMMUNE SYSTEM	60	
• IMMUNOTOXICITY	64	
PESTICIDE-INDUCED IMMUNOTOXICITY	66	
III- MATERIALS AND METHODS	72	
IV- RESULTS	94	
V- DISCUSSION		
VI- SUMMERY AND CONCLUSION		
VII- RECOMMENDATION	166	
VIII- REFERENCES	167	
IX- ARABIC SUMMARY		

LIST OF ABBREVIATIONS

ABTS 2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid)

AChE Acetylcholinesterase

ADI Acceptable Daily Intake

AGE aged garlic extract

ALA alpha lipoic acid

ALS alkali-labile sites

AOX Antioxidants

ARfD Acute Reference Dose

CA chromosome aberrations

CAT catalase

CFU colony forming units

CTL cytotoxic T cells

DHLA dihydrolipoic acid

DSB double-strand breaks

EMRL Extraneous Maximum Residues Limits

EPA Environmental Protection Agency

GGT gamma-glutamyl transpeptidase

GR glutathione reductase

GPx glutathione peroxidase

GSH Reduced glutathione

GST glutathione-S-transferase

HDPM High Dose Pesticides Mixture

H2O2 hydrogen peroxide

LD50 lethal dose in 50% of animals

LDPM Low Dose Pesticides Mixture

LGL large granular lymphocyte

MALT mucosa-associated lymphoid tissues

MDA malonyl aldehyde

MEM Minimum Essential Medium (culture medium)

MHC major histocompatibilty complex

MRL Maximum Residue Level

MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] The

MTT assay has been used to test cytotoxicity of reagents and cell

viability.

NPD Nitrogen Phosphorous Detectors

O2-· superoxide anion

¹O2 singlet oxygen

OC Organochlorines

OH hydroperoxyl radicals

OFR Oxygen free radicals

OP Organophosphate

PBS Phosphate Buffered Saline

PRC Pesticide Residues Committee

PSD Pesticide Safety Directorate

RDA Recommended Dietary Allowance

ROS reactive oxygen species

RPMI Roswell Park Memorial Institute, Media

SCE sister chromatid exchanges

SOD superoxide dismutase

SSB single -strand breaks

TCR T cell receptor

WHO World Health Organization

LIST OF FIGURES

Fig.		Page
1	Key reactions occurring between organophosphates and AChE	21
2	Sources of ROS and other free radicals.	39
3	Cell injury by ROS or free radical-induced oxidative stress	40
4	Lipoic acid (a) and its reduced form – dihydrolipoic acid (b)	49
5	Schematic representation of critical steps in the alkaline ($pH > 13$)	59
	Comet assay	
6	Images of comets (from lymphocytes)	59
7	The realm of pesticide immunotoxicology	66
8	Correlation between (AchE) and (GSH) Content in plasma of the	107
	weaning albino rats at the end of 1st month.	
9	Correlation between (AchE) and (GST& MDA) in plasma of the	107
	weaning albino rats at the end of 1 st month.	
10	Correlation between (AchE) and (GST& MDA) in plasma of the	108
	weaning albino rats at the end of the 2 nd month.	
11	Correlation between (AchE) and (Comet Tail, Comet DNA %) in	108
	blood of the weaning albino rats at the end of the 3 rd month	
12	Correlation between (GSH) and (MDA) in plasma of the weaning	109
	albino rats at the end of the 1 st month.	
13	Correlation between (GSH3) and (Comet Tail, Comet DNA %) in	109
	blood of the weaning albino rats at the end of the 3 rd month.	
14	Correlation between (GSH3) and (Comet Tail, Comet DNA %) in	110
	blood of the weaning albino rats at the end of the 3 rd month	
15	Correlation between (MDA3) and (Comet Tail, Comet DNA %) in	110
	blood of the weaning albino rats at the end of the 3 rd month.	

Correlation between (AchE) and (GSH) Content in plasma of the 16 129 adult albino rats at the end of 1st month. Correlation between (AchE) and (GSH) Content in plasma of the 17 129 adult albino rats at the end of 3rd month. Correlation between (AchE) and (GST& MDA) in plasma of the adult 18 130 albino rats at the end of 1st month. 19 Correlation between (AchE) and (GST& MDA) in plasma of the adult 130 albino rats at the end of 3rd month 20 Correlation between (AchE) and (Comet Tail, Comet DNA %) in 131 blood of the adult albino rats at the end of the 3rd month Correlation between (GSH) and (MDA) in plasma of the adult albino 21 131 rats at the end of the 2nd month. Correlation between (GSH) and (Comet Tail, Comet DNA %) in 22 132 blood of the adult albino rats at the end of the 3rd month Correlation between (MDA) and (Comet Tail, Comet DNA %) in 23 132 blood of the adult albino rats at the end of the 3rd month

LIST OF PHOTOMICROGRAPH

noto		Page
1	Images of comets (from lymphocytes), stained with ethidium bromide,	111
	showing DNA damage in single cells (COMET assay) of a control	
	weaning albino rats. 2200x (40x obj).	
2	Images of comets (from lymphocytes), stained with ethidium bromide,	111
	showing DNA damage in single cells (COMET assay) of a +ve control	
	(antioxidants treated) weaning albino rats. 2200x (40x obj).	
3	Images of comets (from lymphocytes), stained with ethidium bromide,	112
	showing DNA damage in single cells (COMET assay) of the HD	
	pesticides mixture treated weaning albino rats. 2200x (40x obj).	
4	Images of comets (from lymphocytes), stained with ethidium bromide,	112
	showing DNA damage in single cells (COMET assay) of the HD	
	pesticides mixture and antioxidant treated weaning albino rats. 2200x (40x obj).	
5	Images of comets (from lymphocytes), stained with ethidium bromide,	113
	showing DNA damage in single cells (COMET assay) of the LD	
	pesticides mixture treated weaning albino rats. 2200x (40x obj).	
6	Images of comets (from lymphocytes), stained with ethidium bromide,	113
	showing DNA damage in single cells (COMET assay) of the LD	
	pesticides mixture and antioxidant treated weaning albino rats. 2200x (40x obj).	
7	Photomicrograph of a section in the lymph node from a control weaning	114
	albino rats showing the medullary cords (m) and the medullary sinuses	
	(S) (H&E x40).	
8	Photomicrograph of a section in the lymph node from a +ve control	114
	(antioxidants treated) weaning albino rats showing the medullary cords	
	and the medullary sinuses (H&E x40)	
9	Photomicrograph of a section in the lymph node from the HD pesticides	115

- mixture treated weaning albino rats showing some hemorrhagic spots (H), decreased cellularity widening of the sinuses (S). Cells with condensed chromatin were noticed (>) (H&E x40).
- Photomicrograph of a section in the lymph node from the HD pesticides 115 mixture and antioxidant treated weaning albino rats showing widening of the medullary sinuses (S), few macrophages were seen (>) but cellularity was close to normal (H&E x40).
- Photomicrograph of a section in the lymph node from the LD pesticides 116 mixture treated weaning albino rats mild congestion (c), minimal widening of the sinuses (S). Cells with condensed chromatin were seen (>) (H&E x40).
- Photomicrograph of a section in the lymph node from the LD pesticides 116 mixture and antioxidant treated weaning albino rats showing mild congestion, normal cellularity (H&E x40).
- Images of comets (from lymphocytes), stained with ethidium bromide, 133 showing DNA damage in single cells (COMET assay) of a control adult albino rats. 2200x (40x obj).
- Images of comets (from lymphocytes), stained with ethidium bromide, 133 showing DNA damage in single cells (COMET assay) of a +ve control (antioxidants treated) adult albino rats. 2200x (40x obj).
- Images of comets (from lymphocytes), stained with ethidium bromide, 134 showing DNA damage in single cells (COMET assay) of the HD pesticides mixture treated adult albino rats. 2200x (40x obj).
- Images of comets (from lymphocytes), stained with ethidium bromide, 134 showing DNA damage in single cells (COMET assay) of the HD pesticides mixture and antioxidant treated adult albino rats. 2200x (40x obj).

- Images of comets (from lymphocytes), stained with ethidium bromide, 135 showing DNA damage in single cells (COMET assay) of the LD pesticides mixture treated adult albino rats. 2200x (40x obj).
- Images of comets (from lymphocytes), stained with ethidium bromide, 135 showing DNA damage in single cells (COMET assay) of the LD pesticides mixture and antioxidant treated adult albino rats. 2200x (40x obj).
- 19 Photomicrograph of a section in the lymph node from a control adult rat 136 showing normal architecture. The Cortex (C) containing the follicles with their germinal and the Medulla (M) (H&E x20)
- 20 Photomicrograph of a section in the lymph node from a +ve control 136 (antioxidants treated) adult rat showing normal architecture. The Cortex containing the follicles with their germinal and the Medulla (H&E x40)
- Photomicrograph of a section in the lymph node from the HD pesticides 137 mixture treated adult rats showing areas of hemorrhage (H), decreased cellularity (*). Few macrophages could be seen between the lymphocytes (>) (H&E x40).
- Photomicrograph of a section in the lymph node from the HD pesticides 137 mixture and antioxidant treated adult rats showing better cellularity, few widened sinuses (S) and few macrophages between the lymphocytes (>) (H&E x40).
- Photomicrograph of a section in the lymph node from the LD pesticides 138 mixture treated adult rats showing areas of hemorrhage (H), widening of the medullary sinuses (S), cells with condensed chromatin were noticed (>) and decreased cellularity (H&E x40).
- Photomicrograph of a section in the lymph node from the LD pesticides 138 mixture and antioxidant treated adult rats showing mild congestion (c) better cellularity and few chromatin condensed cells (>) (H&E x40).

LIST OF TABLES

Fig.		Page
1	The WHO Recommended Classification of Pesticides by Hazard	9
2	Sources of ROS and other free radicals.	42
3	Cell injury by ROS or free radical-induced oxidative stress	43
4	Lipoic acid (a) and its reduced form – dihydrolipoic acid (b)	70
5	Schematic representation of critical steps in the alkaline (pH > 13) Comet	78
	assay	
6	Pesticide residues monitored in vegetable samples collected from Great	94
	Cairo markets during February 2001 to February 2003.	
7	Time dependant effect of pesticide mixture in presence or absence of	103
	combined antioxidants on Acetylcholinesterase (AchE) (U/L) in plasma of a	
	weaning albino rats.	
8	Time dependant effect of pesticide mixture in presence or absence of	103
	combined antioxidants on reduced glutathione (GSH) Content (Mg/dl) in	
	plasma of a weaning albino rats.	
9	Time dependant effect of pesticide mixture in presence or absence of	104
	combined antioxidants on glutathione-S-Transferase (GST) Activity	
	(μmol/min/ml plasma) in plasma of a weaning albino rats.	
10	Time dependant effect of pesticide mixture in presence or absence of	104
	combined antioxidants on malondial dehyde (MDA) (μ mol/ml) in plasma of	
	a weaning albino rats.	
11	Effect of Chronic intoxication with pesticide mixture in presence or absence of combined antioxidants on (<i>Comet Tail</i> , <i>Comet DNA</i> %) in blood of <i>a weaning</i> albino rats.	105
12	Effect of Chronic intoxication with pesticide mixture in presence or absence of combined antioxidants on (<i>IGG</i> , <i>IGM</i>) in standard serum of <i>a</i> weaning albino rats.	105

- 13 Effect of Chronic intoxication with pesticide mixture in presence or 106 absence of combined antioxidants on (*Lymphocyte transformation*, *Phagocytosis*) in heparinized blood of a *weaning* albino rats.
- 14 Time dependant effect of pesticide mixture in presence or absence of 125 combined antioxidants on *Acetylcholinesterase* (*AchE*) (*U/L*) in plasma of *an adult* albino rats.
- Time dependant effect of pesticide mixture in presence or absence of 125 combined antioxidants on *reduced glutathione (GSH) Content (Mg/dl)* in plasma of *an adult* albino rats.
- Time dependant effect of pesticide mixture in presence or absence of 126 combined antioxidants on *Glutathione-S-Transferase (GST) Activity* (µmol/min/ml plasma) in plasma of an adult albino rats.
- 17 Time dependant effect of pesticide mixture in presence or absence of 126 combined antioxidants on *malondialdehyde (MDA) (μmol/ml)* in plasma of an *adult* albino rats.
- 18 Effect of Chronic intoxication with pesticide mixture in presence or 127 absence of combined antioxidants on (*Comet Tail*, *Comet DNA* %) in plasma of *an adult* albino rats.
- 19 Effect of Chronic intoxication with pesticide mixture in presence or 127 absence of combined antioxidants on (*IGG*, *IGM*) in standard serum of *an adult* albino rats.
- 20 Effect of Chronic intoxication with pesticide mixture in presence or 128 absence of combined antioxidants on (*Lymphocyte transformation*, *Phagocytosis*) in heparinized blood of *an adult* albino rats.
- 21 Statistical results from two-way ANOVA comparing the effect of pesticide 139 mixture and antioxidant supplementation on Dependent Variable at weaning and adult age group.