

THORACIC OUTLET DECOMPRESSION

Thesis

Submitted in partial fulfillment of the degree of M.D. in general surgery

By

Abd El Aty Mohammed Sakr

Supervised by

Prof. Dr. Amr Ahmed Gad

Prof. of vascular surgery Faculty of Medicine Cairo University

Prof. Dr. Ahmed Abd El Hamid Taha

Prof. of vascular surgery Faculty of Medicine Cairo University

Prof. Dr. Charles O. Brantigan

Professor of vascular Surgery University of Colorado Health Sciences Center Denver, Colorado, U.S.A.

ABSTRACT

Key Words: Thoracic outlet, transaxillary resection of first rib, scalenectomy, cervical rib

Thoracic outlet syndrome (TOS) is a disorder referring to the clinical manifestations of the compression of great vessels and nerves at the base of the neck. The etiology of thoracic outlet syndrome (TOS) is believed to be a combination of neck trauma plus an anatomic predisposition. The diagnosis of thoracic outlet compression syndrome is usually made on the basis of an adequate history, physical examination and diagnostic tools. Treatment of TOS depends on the type, severity, and acuity of the presentation. It can be managed conservatively or surgically. In appropriately selected patients, surgical interventions can improve their quality of life over time.

ACKNOWLEDGEMENT

Before all, I should express my deep thanks to Allah. Without his great blessing I would never accomplish my work.

I wish to express my sincere gratitude and unlimited thanks to **Prof. Dr. Amr Ahmed Gad** Prof. of vascular surgery, Faculty of Medicine, Cairo University, for his supervision and encouragement. I am greatly honored and pleased to have the opportunity to learn from his creative advice and expanded experience.

I would like to express my sincere thanks and gratitude to **Prof. Dr. Ahmed Abd El Hamid Taha** Prof. of vascular surgery, Faculty of Medicine, Cairo University For his kind guidance, great help and continuous support.

My special thanks and my deep gratitude to **Prof. DR.**Charles O. Brantigan, Professor of vascular Surgery, University of Colorado Health Sciences Center, Denver, Colorado, U.S.A., for his great help, kind supervision, continuous direction, encouragement and kind advice.

I would like to express my deep thanks to every member in the vascular department, Maadi armed forces hospital, both seniors and juniors.

Firstly and Lastly, I would like to express my deep thanks and my gratitude to my wife and my daughter for their sincere help and encouragement in performing this work.

CONTENTS

1. INTRODUCTION	1
2. AIM OF WORK	6
3. HISTORICAL PERSPECTIVES	7
4. ANATOMY	11
5. ETIOLOGY	19
6. CLINCAL PICTURE	36
7. INVESTIGATIONS	52
8. MANGEMENT	71
CONSERVATIVE TREATMENT	74
SURGICAL TREATMENT	85
9. SURGICAL COMPLICATIONS	92
10.PATIENTS AND METHODS	100
11.RESULTS	125
12.DISSCUSSION	136
13.CONCLUSION	146
14.SUMMARY	147
15.REFRENCES	149
16.ARABIC SUMMARRY	160
	Į.

LIST OF ABBREVIATIONS

AC Acromioclavicular

BC Brachiocephalic

BPG Brachial plexus gliding

CT Computed tomography

EMG Electromyography

MRA Magnetic resonance angiogram

MRI Magnetic resonance imaging

NAV Nerve, artery and vein

NCV Nerve conduction velocity

PTA Percutaneous transluminal angioplasty

ROM Range of motion

SCS Supraclavicular scalenectomy

SSEP Somatosensory evoked potential

TENS Trans-cutaneous electrical nerve stimulation

TFRR Transaxillary first rib resection

TGE Tendon gliding exercises

TOS Thoracic outlet syndrome

US Ultrasonography

USA United States of America

LIST OF TABLES

NO	TABLE	PAGE
1	Principal causes of thoracic outlet syndrome	20
2	Provocative thoracic outlet maneuvers	46
3	The main Differentiating features of the clinical syndromes that mimic thoracic outlet syndrome	49
4	Nerve, Artery, Vein (NAV) Classification of Thoracic Outlet Syndrome	71
5	Staging and Treatment of Thoracic Outlet Syndrome Based on NAV Classification	73
6	Evolution of thoracic outlet syndrome surgery	85
7	Stages of arterial compression and treatment	87
8	Presenting clinical features	126
9	Etiology of TOS	127
10	Results of decompression of TOS according to type of surgery	131
11	Results of surgery according to type of TOS	133
12	Results of TOS decompression according to structural lesion	135

LIST OF FIGURES

NO	FIGURE	PAGE
1	Anatomy of the thoracic outlet area: scalene muscles, brachial plexus, and subclavian artery and vein	12
2	Three potential spaces in the thoracic outlet area that can be responsible for TOS	13
3	Surgical anatomy of the first rib	14
4	Costoclavicular compression	17
5	Subpectoralis minor space in hyperabduction syndrome	18
6	Fibrous bands and congenital anomalies affecting vessels and lower trunk of the brachial plexus (types 1 & 2)	24
7	Fibrous bands and congenital anomalies affecting vessels and lower trunk of the brachial plexus (types 3 & 4)	25
8	Fibrous bands and congenital anomalies affecting vessels and lower trunk of the brachial plexus (types 5 & 6)	26
9	Fibrous bands and congenital anomalies affecting vessels and lower trunk of the brachial plexus (types 7&8)	27

10	Fibrous bands and congenital anomalies affecting vessels and lower trunk of the brachial plexus (types 9 & 10)	29
11	Congenital anomalies affecting the upper and middle trunks of the brachial plexus (types 1 & 2)	30
12	Congenital anomalies affecting the upper and middle trunks of the brachial plexus (types 3 & 4)	31
13	Congenital anomalies affecting the upper and middle trunks of the brachial plexus (types 5 & 6)	32
14	Congenital anomalies affecting the upper and middle trunks of the brachial plexus (type 7)	33
15	Provocative thoracic outlet maneuvers	48
16	Cervical plain radiograph of a 27-year-old woman shows bilateral cervical rib	55
17	a. The normal angiography finding in the patient with arterial TOS	56
	b. An angiogram shows arterial obstruction in the thoracic outlet level, during arm hyperabduction	57
18	Arteriography of a 38-year-old female patient with subclavian artery aneurysm and brachial artery embolism, caused by thoracic outlet syndrome (TOS)	58
19	Right subclavian artery aneurysm caused by TOS in a 36-year-old male patient.	58

20	Stenosis of the left subclavian vein during arm hyperabduction	59
21	Sagital CT demonstrating Arterial compression in a 37-year-old man	61
22	Axial CT demonstrating Venous compression in a 29-year-old woman	62
23	Sagittal T1 weighted MR images, obtained after arm hyperabduction, show compression of the subclavian artery in the costoclavicular space	64
24	Sagittal T1-weighted MR images, show narrowing of the costoclavicular space after hyperabduction and compression of the brachial plexus between the clavicle and first rib	65
25	Doppler ultrasound examination obtained in a 24-year-old man	68
26	Right transaxillary first rib resection. Marking of the incision and holding of the arm in the wristlock position	104
27	Right transaxillary first rib resection. (i) Location of skin incision. (ii) Exposure of first rib, scalene muscles, subclavian artery and vein. The dotted lines show the intended cut on the scalene muscles	105
28	Instruments used during a first rib resection: Overholt rib strippers, Cameron Haight strippers, rib cutters, first rib rongeurs and Richardson retractors	107

29	Schematic axillary view of right thoracic outlet anatomy with right arm fully abducted	108
30	Subperiosteal dissection of first rib with a Cameron Haight elevator, and levering of first rib with the handle of long finger pick-up	110
31	Cutting of first rib in the dissected area	111
32	Removal of the anterior portion of the first rib	112
33	Removal of the posterior portion of the first rib	113
34	View following a 90%–95% resection of the first rib	114
35	Incision and superficial anatomy for a right scalenectomy	116
36	Elevation of the skin flaps and the exposure of the sternocleidomastoid muscle and prescalene fat	118
37	Mobilization of the prescalene fat along the internal jugular vein as a laterally based flap; ligation, division of the superficial cervical artery and exposure of the phrenic nerve, and division of most of the clavicular head of the sternocleidomastoid muscle	119
38	Exposure of the divided lower end of the middle scalene muscle (which was divided during the previously performed first rib resection) and exposure of the long thoracic nerve	122

39	Suturing prescalene fat along the internal jugular vein and covering the brachial plexus	123
40	Presenting features of TOS	126
41	Etiology of TOS	128
42	Etiology of neurogenic, venous and arterial TOS	129
43	Outcome of TOS decompression	130
44	Outcome following TFRR and SCS	132
45	Outcome of decompression of TOS according to type	134
46	Results of TOS decompression according to structural lesion	135

INTRODUCTION

Thoracic outlet syndrome (TOS) is the name given to various clinical manifestations characterized by abnormal compression of the great vessels and nerves at the base of the neck as they pass from the mediastinum and neck to the axilla. (*Balci et al, 2003*)

Thoracic outlet syndrome is a very confusing syndrome with controversy regarding etiology, diagnosis and management. (*Mackinnon et al, 2002*)

The name itself is confusing and misrepresentative. Clinicians tend to call it the thoracic outlet because the structures being compressed are exiting the chest in this location. Anatomists consider this incorrect terminology, as they work from superior to inferior, and thus consider the same area to be the thoracic inlet. These controversies over semantics only add further confusion to already complex clinical problems. (*Brantigan et al, 2004*)

Other names used, such as scalenus anticus syndrome, costoclavicular syndrome, cervical rib syndrome, subcoracoid-pectoralis minor syndrome, costoclavicular syndrome, and first-thoracic rib syndrome further confused the understanding of the pathophysiology of this condition. (*Brantigan et al, 2004*)

The thoracic outlet is a three dimensional space bounded by the first thoracic vertebra posteriorly, the superior border of the manubrium sterni anteriorly, and the first rib and costal cartilage laterally. (*Atasoy*, 2004)

The structures passing through this area and into the upper limb are the subclavian artery, the subclavian vein and the nervous structures of the brachial plexus. (*Cooke*, 2003)

The etiology of thoracic outlet syndrome (TOS) is believed to be a combination of neck trauma plus an anatomic predisposition. (*Sanders et al, 2004*)

In many cases, an anatomical abnormality will be present and be the underlying reason for the development of symptoms of thoracic outlet syndrome. There may be occupational influences to provoke or exacerbate symptoms, such as working repeatedly with the arms at or above shoulder height. (*Cooke*, 2003)

The clinical presentation of thoracic outlet syndrome is highly variable, depending on what parts of brachial plexus is involved and to what extent the subclavian artery or vein is involved. (*Brantigan et al, 2004*)

The symptoms of thoracic outlet syndrome fit into four groups: neurological, arterial, venous and non-specific.

Neurological symptoms consist of pain, paraesthesia, anaesthesia and motor weakness, mostly involving the lower plexus (ulnar nerve) distribution. (*Samarasam et al*, 2004)

Arterial symptoms include aching, fatigue, upper limb claudication and signs of distal embolization. Autonomic vascular symptoms include pallor, excessive sweating and Raynaud's phenomenon. Venous symptoms include swelling, cyanosis of arm and acute deep vein thrombosis. (*Brantigan et al, 2004*)

There is a fourth group of patients whose presentation is characterized by pain but no clear neurological deficits or clear vascular symptoms. This type of TOS is termed *disputed* neurogenic TOS. (Sheth et al, 2005)

The wide variability of patient symptoms and the lack of a valid reliable test to confirm the diagnosis of TOS make it difficult to identify correctly those patients with TOS. The diagnosis of thoracic outlet compression syndrome is usually made on the basis of an adequate history and physical examination. Diagnosis is largely one of exclusion. (*Urschel et al, 2007*)

Several tests are used in the diagnosis, including nerve conduction velocity (NCV), electromyography (EMG), angiography, venography and radiographic studies of the chest