Intraocular pressure measurement using different techniques in normal eyes & post lamellar refractive Surgery a comparative clinical study

A Thesis submitted by

Shireen Mostafa Abdalla Shousha M.B.B.CH.

In partial fulfillment of the requirements for the M.Sc. degree in Ophthalmology

Under Supervision Of

Dr. Mahmoud Abo steit

Professor of Ophthalmology Cairo University

Dr. Mohamed Hassan Hosny

Professor of Ophthalmology Cairo University

Dr. Wael Ewais

Lecturer of Ophthalmology Cairo University

Cairo University

2012

Acknowledgments

In these few lines, I would like to express my deepest gratitude to the main supervisors of this thesis, *Prof.Mahmoud AboSteit*, *Prof.Mohamed Hosny*, & *Dr.Wael Ewais* for their valuable help and guidance in planning and conducting this work.

I am particularly indebted to *Prof.Mahmoud Abo Steit* for his continuous great support and encouragement, the main idea of undertaking this research was originally his.

I would like to express my deepest gratitude to *Prof.Mohamed Hosny* for his patience and meticulous supervision throughout the course of conducting this research; He has enriched me with many ideas and has aided me in performing and interpreting the statistics by myself, & to *Dr. Wael Ewais* for his continuous guidance and support.

Last but not least, I would like to express my deepest gratitude to my parents and my sister, who supported me a lot and without them the completion of this work would have not been possible.

Shireen mostafa

Abstract

Background

Intraocular pressure (IOP) measurement post Lasik is a great debate, a large number of studies addressed .No previous studies as regards IOP measurement after Epilasik.

Purpose

To determine accuracy of IOP measurement after Lasik and Epilasik surgeries using Goldmann applanation (GAT), Air puff tonometry, Ocular response analyzer (ORA IOP_{cc}) and Pentacam corrected IOP.

Methods

This is a prospective comparative clinical study that was conducted on 60 eyes in the interval between February 2011 and September 2011 divided into 4 groups:(A) 20 corneas of patients before undergoing Lasik surgery, (B) 20 corneas of the same patients two months after Lasik surgery, (C) 10 corneas of patients before undergoing Epilasik surgery, (D) 10 corneas of the same patients two months after Epilasik surgery. Patients' age ranged from 20-50 years.IOP was measured prior to and after the suitable refractive surgery done using Goldmann applanation tonometry (GAT), air puff tonometry and Ocular response analyzer (corneal compensated IOP). Pentacam was used pre and post operative to measure both IOP and the central corneal thickness.

Results

Significant positive linear correlations were found between preoperative IOP values measured by GAT (App pre) and air puff tonometry (Air puff pre), Pentacam corrected IOP (Pentacam pre), ocular response analyzer IOP_{cc} (ORA pre), as well as central corneal thickness (Pach pre) in Lasik patients "group A" .The correlation between each of Pentacam pre and ORA pre was the strongest to the GAT (r=0.97 and r=0.858 respectively with p< 0.001, Compared to the preoperative values, postoperative IOP measured by the four methods were significantly lower in both Lasik and Epilasik patients . The difference was significantly evident when the IOP was measured using the GAT and Air puff tonometry (median > 6 mmHg for Lasik patients, about 2 mmHg for Epilasik patients), compared to ORA and Pentacam corrected IOP (median ±1 mmHg for both the Lasik and Epilasik patients) "p < 0.001 for Lasik patients and 0.017 for Epilasik patients", Non significant correlations has been shown between the degree of lowering of postoperative IOP and postoperative pachymetry (central corneal thickness) (Pach post) values in both Lasik (group B) and Epilasik (group D) patients.

Conclusion

Refractive surgery causes significant lowering of IOP measured using GAT, Airpuff tonometry, ORA and Pentacam. Lasik has more effect on fallacies of IOP measurement post refractive surgery than Epilasik.

Key words: Hand held ART - Ultra sound - Epipolis Lasik.

Table of contents

Title	Page
Table of Tables	
Table of Figures	
Abbreviations & Acronyms	
Introduction and Aim of the Study	
Review of Literature	
Chapter 1: Intraocular Pressure	15
Chapter 2: Ocular Response Analyzer	36
Chapter 3: Scheimpflug Technique and CCT	
Chapter 4: Lamellar Refractive Surgery Versus Surface Ablation	60
Chapter 5: Lasik Effect on the Cornea and IOP	
Patients and Methods	
Results	
Discussion	
Conclusion	
Limitations	
Summary	104
References	
Master Table	
Arabic Summary	

Table of Tables

Table	Title	Page
Table 1	Agents that affect aqueous humor formation	19
Table 2	Factors affecting aqueous humor outflow	22
Table 3	Correction table for IOP based on CCT	52
Table 4	Demographics, Pre and Postoperative IOP Values for Lasik and Epilasik Patients	81
Table 5	Bivariate Correlations Between App pre and Other Methods in Group A	82
Table 6	Bivariate Correlations Between App pre and Other Methods in Group C	82
Table 7	Bivariate Correlations Between App pre and Other Methods in All Preoperative Study Patients (Group A&C)	83
Table 8	Comparison Between App pre & Air puff pre in Lasik and Epilasik patients	84
Table 9	Comparison Between App pre & Pentacam pre in Lasik and Epilasik patients	84
Table 10	Comparison Between App pre &ORA pre in Lasik and Epilasik patients	84
Table 11	Comparison Between App-Pent pre & App-ORA pre in Lasik and Epilasik patients	85
Table 12	Comparison Between App-Pent pre & App-Air puff pre in Lasik and Epilasik patients	85
Table 13	Comparison Between Postoperative IOP Measured by The Different Methods.	86
Table 14	Comparison Between Pre & Post Operative IOP Values in Lasik and Epilasik patients	87
Table 15	Difference Between Post and Preoperative IOP Values in Lasik and Epilasik Patients	88
Table 16	Comparison Between Applanation Δ and Pentacam Δ in Lasik and Epilasik Patients.	88
Table 17	Comparison between Applanation Δ and ORA Δ in Lasik and Epilasik Patients.	88
Table 18	Comparison Between Pentacam Δ and ORA Δ in Lasik and Epilasik Patients	88
Table 19	Comparison between Applanation Δ and Air puff Δ in Lasik and Epilasik Patients	88
Table20	Bivariate Correlations Between the Degree of lowering of Postoperative IOP and Postoperative Pachymetry value in Lasik (group B) Patients	89

Table 21	Bivariate Correlations Between the Degree of Lowering of Postoperative	90
	IOP and Postoperative Pachymetry value in Epilasik (group D) Patients	
	Comparison of the Degree of Lowering of IOP values in Lasik Patients.	90
Table 22	Lasik patients were classified into two subgroups according to median	
	postoperative pachymetry value	
Table 23	Bivariate Correlations Between the Degree of lowering of Postoperative IOP and Pachymetry Δ value in Lasik (group B) Patients	91
Table 24	Bivariate Correlations Between the Degree of Lowering of Postoperative	91
	IOP and Pachymetry Δ value in Epilasik (group D) Patients	

Table of Figures

figure	Title	page
Fig.1	Schematic diagram illustrating the trabecular meshwork conventional outflow pathway	16
Fig.2	Schematic diagram illustrating the uveoscleral outflow pathway	16
Fig.3	The Goldmann Applanation Tonometer	25
Fig. 4	A schematic illustration of forces affecting the applanation force in GAT	25
Fig. 5A	Perkins tonometer	26
Fig. 5B	Draeger's tonometer	26
Fig. 6	The relationship between force and frequency shift over time with the ART	28
Fig. 7	Conceptual illustration of the ARTservo prototype	28
Fig 8	Principle of Schiotz tonometry	30
Fig. 9	Icare Tonometer	31
Fig.10	The Pascal Dynamic Contour Tonometer	31
Fig. 11	ORA	37
Fig. 12	Parameters measured by ORA :IOPg,IOPcc,CRF,and CH	39
Fig. 13	CRF	40
Fig. 14	Relation between CCT and CRF	42
Fig. 15	Relation between CCT and CH	43
Fig.16	ORA mechanics	44
Fig.17	ORA Parameters pre and post Lasik	45
Fig. 18	CRF in normal, Keratoconus and post Lasik	45
Fig. 19	CH in normal, Keratoconus and postlasik	46
Fig. 20	CH in normal, POAG, NTG	47
Fig. 21	Orbscan II scanning slit corneal topographer	55
Fig. 22	The basic optical geometry of the camera	56

Fig. 23	Scheimpflug camera	57
Fig.24	Oculus Pentacam	57
Fig.25	Schematic representation of corneal recontouring by the Excimer laser	60
Fig.26	Techniques for de epithelialization for surface ablation	64
Fig. 27	Schematic picture comparing Lasek and Lasik procedures	65
Fig. 28	Lasik effect on CH	66
Fig. 29	IOPcc pre and post Lasik	68
Fig. 30	The change in measured IOP after Lasek surgery	71
Fig.31	Bivariate Correlations Between App pre and Other Methods in All Preoperative Study Patients (Group A&C)	83
Fig.32	Comparison Between Postoperative IOP Values in Lasik (group B) and Epilasik (group D) Patients	85
Fig. 33	Pre and Post Operative IOP Values for the Lasik Patients	86
Fig.34	Pre and Post Operative IOP Values for the Epilasik Patients	87

Abbreviations & Acronyms

A: Area

Air puff post: Postoperative value of Air puff tonometry

Air puff pre: Preoperative value of Air puff tonometry

Air puff Δ : Difference of IOP measured by Air puff tonometry pre and post operatively

(post-preoperative value)

ALK: Automated lamellar keratoplasty

App-Air puff pre: Difference between preoperative IOP values measured by Goldmann

applanation tonometry and Air puff tonometry

App-ORA pre: Difference between preoperative IOP values measured by Goldmann

applanation tonometry and Ocular response analyzer

App-Pent pre: Difference between preoperative IOP values measured by Goldmann

applanation tonometry and Pentacam corrected IOP

App post: postoperative value of Goldmann applanation tonometry

App pre: preoperative value of Goldmann applanation tonometry

Applanation Δ : Difference of IOP measured by Goldmann applanation tonometry pre

and post operatively (post-preoperative value)

ARS: Applanation resonance sensor

ART: Applanation resonance tonometry

ART_{Biom}: Applanation resonance tonometry biomicroscope

ART_{Hand}: Hand held ART

ART_{servo}: Servo controlled ART

BFA: Blood flow analyzer

CC: Corneal curvature

CCT: Central corneal thickness

CH: Corneal hysteresis

CRF: Corneal resistance factor

d.RCT: Dynamic rasterstereographic corneal topography

Eq: Equation

Epilasik: Epipolis Lasik

F: Force

FFKc: Forme fruste Keratoconus

GAT: Goldmann applanation tonometry

IOP: Intra ocular pressure

IOP_{cc}: Corneal compensated IOP

IOP_g: Goldmann correlated IOP

ISO: International standard organization

KMi: Keratoconus match index

Lasek: Laser assisted sub epithelial keratomileusis

Lasik: Laser assisted insitu keratomileusis

NTG: Normal tension glaucoma

NCT: Non contact tonometry

OAG: Open angle glaucoma

OBF: Ocular blood flow

OCT: Ocular coherence tomography

OHT: Ocular hypertension

OHTS: Ocular hypertension treatment study

ORA: Ocular response analyzer

ORA pre: Preoperative ORA IOP_{cc}

ORA post: Postoperative ORA IOP_{cc}

 $\mathbf{ORA}\ \Delta\text{:}\ \mathrm{Difference}\ \mathrm{of}\ \mathrm{IOP}\ \mathrm{measured}\ \mathrm{by}\ \mathrm{Ocular}\ \mathrm{response}\ \mathrm{analyzer}\ \mathrm{pre}\ \mathrm{and}\ \mathrm{post}$

operatively (post-preoperative value)

p: Probability value

Pach post: Postoperative CCT

Pach pre: Preoperative CCT

Pach Δ : Pachymetry Δ =post-preoperative pachymetry

PDCT: Pascal dynamic contact tonometry

Pentacam pre: preoperative value of Pentacam corrected IOP

Pentacam post: postoperative value of Pentacam corrected IOP

Pentacam Δ : Difference of Pentacam corrected IOP pre and post operatively (post-

preoperative value)

PEX: Pseudo exfoliation syndrome

PRK: Photo refractive keratectomy

r: Spearman correlation coefficient

TM: Trabecular meshwork

US: Ultra sound

VA: Visual acuity

Introduction & Aim of Work

Introduction

Intraocular pressure (IOP) measurement plays a central role throughout ophthalmology. It is part of routine ophthalmologic examinations and important in the management and follow-up of glaucoma patients.

At least half of the population diagnosed with open angle glaucoma (OAG) is asymptomatic. There are substantial variations in prevalence throughout the world due to genuine differences in populations but also due to methodological differences, such as differences in diagnostic criteria and sampling methods ¹.

The most important risk factor for the development ² and the progress of OAG is elevated IOP ³. Elevated IOP is still the only risk factor that is modifiable ⁴ other ocular risk factors include thin corneas ⁵ and pseudo exfoliation syndrome (PEX) in combination with elevated IOP, which increase the risk for both OAG development and progression of the disease ¹.

Refractive surgery has become increasingly popular in recent years. Laser assisted insitu keratomileusis (Lasik) has become popular in treating myopia since 1993 the structural modification of corneal properties, e.g. central corneal thickness (CCT) and corneal curvature (CC), by refractive surgery, has augmented the risk for measurement error of IOP and consequently brought attention to the IOP measurement.

New methods for IOP measurement and assessing corneal biomechanics are continuously under study and evaluation.

Aim of Work

The aim of this study is to:

• Determine the ease and accuracy of intraocular pressure measurement pre and post refractive surgery (Lasik and Epilasik) using the following methods:

Applanation tonometry

Air puff tonometry

Ocular response analyzer

Scheimpflug camera

•Comparing the results for the Lasik group to Epilasik group to determine effect of lamellar refractive surgery versus surface ablation on bias of IOP measurement after each of them.

Review of Literature