

Synthesis and Evaluation of Some Cationic Thiol Surfactants Assembling on Nanoparticles and their Applications

A Thesis Submitted for Degree of Ph.D. in Organic Chemistry

$\mathcal{B}y$

Radwa Mohamed Sami Abdelmohsen

(M.Sc. Organic Chemistry)

To

Chemistry Department
Faculty of Women's for Arts, Science and Education
Ain Shams University
Cairo, Egypt

Supervised by

Prof.Dr. Nadia G. Kandile

Prof.Dr. Eid M. Azzam

Prof. of Organic Chemistry Chemistry Dep. Faculty of women For Arts, Science and Education, Ain Shams University Prof. of PetroChemicals
Egyptian Petroleum Research Institute

Assoc. Prof.Dr. Mohamed A. Hegazy

Assoc. Prof. of Physical Chemistry Egyptian Petroleum Research Institute

Name : Radwa Mohamed Sami AbdelMohsen

Science Degree : M.Sc.

Department: Chemistry

College : Faculty of Women for Arts, Science and

Education

University : Ain Shams University

M.Sc : 2010

Acknowledgement

First, I would like to thank "Allah" for giving me the opportunity and the strength to accomplish this work.

I would like to express my deepest gratitude, appreciation and respect to:

Prof. Dr. Nadia Gharib Kandile, Professor of Organic Chemistry at the Faculty of women, Ain Shams University. Department of Chemistry, to oversee. Supervision nice, ongoing assistance and value, and cash fruitful and encouragement during the implementation of this work, and thank her very much for her advice me on each of my research as well as my career which priceless.

Prof. Dr. Eid Mahmoud Sayed Azzam, Professor of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), for his guidance in selecting the research point; for his invaluable assistance, guidance in my entire experimental work, in my thesis writes up and reviewing it. I am grateful for the time and efforts taken by him to read and correct the written materials.

Prof. Dr. Abdel Fattah M. Badawi, Professor of Applied Organic Chemistry, Egyptian Petroleum Research Institute, for his valuable advice, talented supervision, and constructive criticism during the progress of the work.

Assoc. Prof. Dr. Mohamed Abd El-azim Hegazy, Association Professor of Petrochemicals, Egyptian Petroleum Research Institute, for his continuous advice, talented supervision and valuable criticism during the progress of the work.

Finally, I would like to thank my colleagues and all members of Petrochemicals Department, (EPRI) Egyptian Petroleum Research Institute, especially Surface Active Agents Lab., for providing the facilities to carry out the practical work.

To My PARENTS

I have to thank Allah for choosing both of you to be my parents.

Thank you for supporting me

TO MY DEAR HUSBAND

And MY DEAR SONS

TO MY FAMILY

Thank you for your supporting and helping me

List of Contents

Topic	Page
Aim of the work	i
Summary and conclusion	iii
Chapter 1: Introduction	
1.1. Surface active agent	1
1.1.1. Definition of surfactant.	1
1.1.2. Classification of surfactants.	1
1.1.2.1. Cationic surfactants.	2
1.1.2.2. Anionic Surfactants	3
1.1.2.3. Non-ionic Surfactants.	3
1.1.2.4. Amphoteric (Zwitterionic) Surfactants	3
1.1.3. How surfactants work?	3
1.2. Nanotechnology	5
1.2.1. Silver nanoparticles and its application in coating	6
1.2.2. Gold nanoparticles and its application in coating	7
1.3. Surfactant role in nanotechnology	8
1.4. Thiols surfactants in nanotechnology application	9
1.5. General Introduction of Schiff bases	11
1.6. Application of nanoparticles in petroleum field	13
1.6.1. Application of nanoparticles as corrosion inhibitors	13
1.6.2. Application of nanoparticles in coating	17
1.7. Corrosion and Corrosion Inhibitors	20
1.7.1. Classification of corrosion.	21
1.7.1.1. Dry corrosion.	21
1.7.1.2. Wet corrosion.	21
1.7.2. Forms of corrosion.	22
1.7.3. Methods of corrosion protection	22

1.7.3.1. Corrosion Inhibitors.	23
1.7.3.1.1. Classification of inhibitor	23
1.7.3.2. Cathodic protection.	24
1.7.3.3. Anodic Protection.	25
1.7.3.4. Surface treatments.	26
Chapter 2: Materials	
2.1. Materials	28
2.2. Instruments	29
2.2.1. Fourier Transform Infrared Spectrometer (FTIR)	29
2.2.2. Proton Nuclear Magnetic Resonance (¹ HNMR)	29
2.2.3. Mass Spectra (MS)	29
2.2.4. UV-VIS optical	30
2.3. Surface tension measurements	30
2.4. Conductivity measurements	30
2.5. Chemical composition and preparation of carbon steel sample	30
2.6. Corrosion measurements	31
2.6.1. Weight loss measurements	31
2.6.2. Electrochemical measurements	31
2.6.2.1. Potentiodynamic polarization method	31
2.6.2.2. Electrochemical impedance spectroscopy (EIS)	32
2.7. Transmission electron microscope (TEM)	32
2.8. Composition of paint	32
2.8.1. Preparation of the modified paint	32
2.8.2. Preparation of carbon steel for coating test	33
2.9. Paint performance	33
2.9.1. Salt spray test.	33
2.10. Synthesis of novel cationic surfactants	34
2.10.1. Synthesis of the cationic thiol surfactants	34

2.10.2. Synthesis of amphoteric and di-cationic surfactants	35
2.11. Preparation of nanoparticles	36
2.11.1. Preparation of silver nanoparticles (AgNPs)	36
2.11.2. Preparation of the cationic thiol surfactants-coated silver	
nanoparticles	36
2.11.3. Preparation of the gold nanoparticles solution	36
2.11.4. Preparation of the cationic surfactants-coated Gold	
nanoparticles	37
Chapter 3: Results and discussion	
3.1. Synthesis of the cationic thiol surfactants	38
3.2. Prepared surfactants confirmation	39
3.2.1. Fourier Transform Infrared spectra (FTIR)	39
3.2.2. Proton nuclear magnetic resonance (¹ H-NMR)	43
3.2.3. Mass Spectra (MS)	47
3.3. Surface active properties.	51
3.3.1. Surface tension (γ)	51
3.3.2. Effectiveness (π_{cmc})	53
3.3.3. The surface excess ($\Gamma_{\rm max}$)	53
3.3.4. The area per molecule (A_{\min})	54
3.3.5. Conductivity measurements.	55
3.4. Corrosion inhibition evaluation of synthesized cationic thiol	
surfactant	57
3.4.1. Weight loss measurements	57
3.4.2. Potentiodynamic polarization measurements	64
3.4.3. Electrochemical impedance spectroscopy (EIS)	70
3.5. Adsorption isotherm and standard adsorption free energy	78
3.5.1. The standard free energy of micelle formation ($\Delta G^{\rm o}_{\rm mic}$)	82
3.6. Activation energy	82

3.7. Inhibition mechanism.	8
3.8. The relation between corrosion inhibition and surface properties	
of the prepared cationic surfactants	8
3.9. Self-assembling of the synthesized surfactants on the prepared	
silver and gold nanoparticles (AgNPs & AuNPs)	9
3.9.1. Fourier transform infrared spectrometer (FTIR)	9
3.9.2 Ultraviolet absorption of AgNPs, AuNPs capped by the	
synthesized cationic thiol surfactant	9
3.9.3 Transmission electron microscope (TEM)	9
3.10. Corrosion measurements	10
3.10.1. Potentiodynamic polarization measurements	1
3.10.2. Electrochemical impedance spectroscopy (EIS)	1
3.10.3. Salt spray test	1
3.11. Chemical structure confirmation of the synthesized amphoteric	
and di-cationic surfactants	1
3.11.1. Preparation of amphoteric and di- cationic surfactants	1
3.12. Confirming the chemical structure of the synthesized	
surfactants using Mass spectra, FTIR and ¹ HNMR	1
3.12.1. FTIR spectra	1
3.12.2. ¹ H NMR spectra	1
3.12.3. Mass Spectra (MS)	1
3.13. Surface active properties	1
3.13.1. Surface tension (γ)	1
3.13.2. Effectiveness (π_{CMC})	1
3.13.3. The surface excess ($\Gamma_{\rm max}$)	1
3.13.4. The area per molecule (A_{\min})	1
3.13.5. Conductivity measurements	1
3.14. Corrosion inhibition evaluation of synthesized amphoteric and	

Contents

di-cationic surfactant	134
3.14.1. Weight loss measurements	134
3.14.2. Polarization measurements	138
3.14.3. Electrochemical impedance spectroscopy	142
3.15. Adsorption Isotherm	146
3.15.1. The standard free energy of micelle formation ($\Delta G^{\rm o}_{\rm mic}$)	148
3.16. Activation thermodynamic parameters	149
3.17. Mechanism of corrosion inhibition- structure and reactivity	153
3.18. Chemical structure confirmation of AgNPs and AuNPs capped	
by di-cationic surfactants	154
3.18.1. FTIR spectra.	154
3.18.2. Ultraviolet absorption of AgNPs, AuNPs capped by the	
synthesized di-cationic surfactant	157
3.18.3. Transmission electron microscope (TEM)	160
3.19. Corrosion measurements	162
3.19.1. Potentiodynamic polarization measurements	162
3.19.2. Electrochemical impedance spectroscopy (EIS)	168
3.19.3 Salt spray test.	172
References	174
Arabic summary	

List of Figures

Figure	Title	Page
No.		
1	Schematic illustration of a surfactant molecule	1
2	Classification of surfactants	2
3	How surfactant works in different phases	4
4	Represented the micelle shapes	4
5	Schiff bases reaction.	12
6	Mechanism of Schiff bases	12
7	Corrosion arrested by release of corrosion inhibitor	18
8	Simplified illustration theory of corrosion steps	20
9	Types of corrosion.	21
10	Schematic illustration of the common corrosion forms.	22
11	The chemical reaction of the prepared cationic	
	surfactants	38
12	FTIR-spectrum of 1-octyl-4-mercaptopyridine-1-ium	
	bromide (I)	40
13	FTIR-spectrum of 1-decyl -4-mercaptopyridine-1-ium	
	bromide (II)	41
14	FTIR-spectrum of 1-dodecyl -4-mercaptopyridine-1-	
	ium bromide (III)	42
15	¹ H-NMR spectrum of 1-octyl-4-mercaptopyridine-1-	
	ium bromide (I)	44
16	¹ H-NMR spectrum of 1-decyl-4-mercaptopyridine-1-	
	ium bromide (II)	45
17	¹ H-NMR spectrum of 1-dodecyl-4-mercaptopyridine-	
	1-ium bromide (III)	46

18	Mass spectrum of 1-octyl-4-mercaptopyridine-1-ium
	bromide (I)
19	Mass spectrum of 1-decyl-4-mercaptopyridine-1-ium
	bromide (1I)
20	Mass spectrum of 1-dodecyl-4-mercaptopyridine-1-
	ium bromide (III)
21	Variation of the surface tension with the synthesized
	cationic surfactants concentrations in water at 25 $^{\rm o}C\dots$
22	The electrical conductivity plots against concentration
	of the synthesized cationic surfactants concentrations
	in water at 25 °C
23	The relation between corrosion inhibition efficiency of
	carbon steel and logarithm of the concentration of the
	inhibitor I
24	The relation between corrosion inhibition efficiency of
	carbon steel and logarithm of the concentration of the
	inhibitor II
25	The relation between corrosion inhibition efficiency of
	carbon steel and logarithm of the concentration of the
	inhibitor III
26	Anodic and cathodic polarization curves obtained at
	25 °C in 1.0 M HCl in different concentrations of
	compound I
27	Anodic and cathodic polarization curves obtained at
	25 °C in 1.0 M HCl in different concentrations of
	compound II
28	Anodic and cathodic polarization curves obtained at
	25 °C in 1.0 M HCl in different concentrations of
	compound III

29	Nyquist plots for carbon steel in 1.0 M HCl in absence
	and presence of different concentrations of compound
	I
30	Nyquist plots for carbon steel in 1.0 M HCl in absence
	and presence of different concentrations of compound
	II
31	Nyquist plots for carbon steel in 1.0 M HCl in absence
	and presence of different concentrations of compound
	III
32	Suggested equivalent circuit model for the studied
	system
33	Langmuir's adsorption plots for carbon steel in 1.0 M
	HCl containing different concentrations of I, II and III
	at 25 °C
34	Arrhenius plots of ln k versus 1/T for carbon steel in
	1.0 M HCl solution without and with various
	concentrations of compound (I)
35	Arrhenius plots of ln k versus 1/T for carbon steel in
	1.0 M HCl solution without and with various
	concentrations of compound (II)
36	Arrhenius plots of ln k versus 1/T for carbon steel in
	1.0 M HCl solution without and with various
	concentrations of compound (III)
37	Arrhenius plots of ln (k/T) versus 1/T for carbon steel
	in 1.0 M HCl solution without and with various
	concentrations of compound (I)
38	Arrhenius plots of ln (k/T) versus 1/T for carbon steel
	in 1.0 M HCl solution without and with various
	concentrations of compound (II)

39	Arrhenius plots of ln (k/T) versus 1/T for carbon steel
	in 1.0 M HCl solution without and with various
	concentrations of compound (III)
40	FT-IR Spectra of AgNPs capped by cationic thiol
	surfactant (III)9
41	FT-IR Spectra of AuNPs capped by cationic thiol
	surfactant (III)
42	UV spectra of AgNPs
43	UV spectra of AgNPs capped by cationic thiol
	surfactant III. 9
44	UV spectra of AuNPs
45	UV spectra of AuNPs capped by cationic thiol
	surfactant III. 9
46	TEM images of silver nanoparticles
47	TEM images of AgNPs capped by cationic
	surfactant
48	TEM images of gold nanoparticles
49	TEM images of gold nanoparticles AuNPs capped by
	cationic thiol surfactant
50	The potentiodynamic responses of carbon steel
	painted with unmodified (blank) and modified paint
	with the AgNPs capped by 1-dodecyl-4-
	mercaptopyridine-1-ium bromide immersed in 3.5%
	NaCl solution. 10
51	The potentiodynamic responses of carbon steel
	painted with unmodified (blank) and modified paint
	with the AuNPs capped by 1-dodecyl-4-
	mercaptopyridine-1-ium bromide immersed in 3.5%
	NaCl solution

52	The relation between η_p with the amount of the NPs	
	capped by 1-dodecyl-4-mercaptopyridine-1-ium	
	bromide in the paint of AgNPs	107
53	The relation between η_{p} with the amount of the NPs	
	capped by 1-dodecyl-4-mercaptopyridine-1-ium	
	bromide in the paint of AuNPs	107
54	Electrochemical impedance spectroscope	
	measurements in the nyquist repesentation for carbon	
	steel electrode panted by unmodified and modified	
	paint by AgNPs capped by 1-dodecyl-4-	
	mercaptopyridine-1-ium bromide immersed in 3.5 wt	
	% NaCl solution	110
55	Electrochemical impedance spectroscope	
	measurements in the nyquist repesentation for carbon	
	steel electrode panted by unmodified and modified	
	paint by AuNPs capped by 1-dodecyl-4-	
	mercaptopyridine-1-ium bromide immersed in 3.5 wt	
	% NaCl solution	111
56	Equivalent circuit proposed for fitting the impedance	
	spectra for carbon steel coated with unmodified epoxy	
	paint (blank) in 3.5 % M NaCl at 25 °C	112
57	Equivalent circuit proposed for fitting the impedance	
	spectra for carbon steel coated with modified epoxy	
	with different amounts of the AuNPs capped by	
	synthesized thiol cationic surfactant in 3.5 % M NaCl	
	at 25 °C	112
58	Salt spray test of steel painted with different paints,	
	(A-E) without and with AgNPs capped by 1-dodecyl-	
	4-mercaptopyridine-1-ium bromide. (A(without	

AgNPs, (B) 0.4 wt% of AgNPs, (C) 0.6 wt% of
AgNPs, (D) 0.8 wt% of AgNPs and (E) 1 wt% of
AgNPs, (F-J) without and with AuNPs capped by 1-
dodecyl-4-mercaptopyridine-1-ium bromide. (F)
Without AuNPs, (G) 0.4 wt% of AuNPs, (H) 0.6 wt%
of AuNPs, (I) 0.8 wt% of AuNPs and (J) 1 wt% of
AuNPs
Preparation of 4-((pyridine-4-yl)methylene
amino))benzoate
Preparation of N-((pyridin-4-yl) methylene) pyridin-4-
amine
FTIR spectrum of 4-((pyridine-4-yl)
methyleneamino))benzoate
FTIR of N-((pyridin-4-yl) methylene) pyridin-4-
amine
Preparation of amphoteric surfactant
(IV)
Preparation of di-cationic surfactant (IV)
FTIR spectrum of the synthesized amphoteric
surfactant IV
FTIR spectrum of the synthesized di-cationic
surfactants V.
¹ H-NMR spectrum of the synthesized amphoteric
surfactant IV
¹ H-NMR spectrum of the synthesized di-cationic
surfactant V
Mass spectrum of amphoteric surfactant
(IV)