

Structural stability of *PMMA* prepared in presence of some transition metal complexes: Spectroscopic and Photostability studies.

Submitted by

Ahmed Shebl El Sayed Sayed Ahmed

(B.Sc. in Chemistry)

For The Award of The M.Sc. Degree in Chemistry

To
Chemistry Department
Faculty of Science
Ain Shams University
Cairo Egypt
2008

Structural stability of *PMMA* prepared in presence of some transition metal complexes: Spectroscopic and Photostability studies.

M.Sc. Thesis (Chemistry)

Supervised by

Prof. Dr. Mohamed Ahmed Mohamed Mekewi.

Professor of Physical Chemistry, Faculty of Science, Ain Shams University.

Dr. Hany Mohamed Ahmed Abdel dayem.

Lecturer of Physical Chemistry, Faculty of Science, Ain Shams University.

Dr. Sherif Omar Hassan Moussa.

Lecturer of Physical Chemistry, Misr International University.

APPROVAL SHEET

Structural stability of *PMMA* prepared in presence of some transition metal complexes: Spectroscopic and Photostability studies.

By

Ahmed Shebl El Sayed Sayed Ahmed (B.Sc. in Chemistry)

This thesis for Master Degree has been approved by:

Prof. Dr. Mohamed Ahmed Mohamed Mekewi.

Dr. Hany Mohamed Ahmed Abdel dayem.

Dr. Sherif Omar Hassan Moussa.

Head of department

Prof. Dr. El Sayed Ahmed Soliman

الثبات التركيبى للبولى ميثيل ميثاكريلات المحضر فى وجود بعض متراكبات العناصر الانتقالية (الدراسات الطيفية و الثبات الضوئى).

رسالة مقدمة من

أحمد شبل السيد سيد أحمد معيد بقسم الكيمياء – كلية العلوم – جامعة عين شمس

مقدمة إلى قسم الكيمياء — كلية العلوم — جامعة عين شمس لنيل درجة الماجيستير في الكيمياء

تحت إشراف

ا. د / محمد احمد محمد مكيوى أستاذ الكيمياء الفيزيائية – كلية العلوم – جامعة عين شمس

د / هاتى محمد احمد عبد الدايم مدرس الكيمياء الفيزيائية – كلية العلوم – جامعة عين شمس

د / شريف عمر حسن موسى مدرس الكيمياء الفيزيائية – جامعة مصر الدولية

۲..۸

اسم الطالب: أحمد شبل السيد سيد احمد

الدرجة العلمية :ماجيستير

القسم التابع له: قسم الكيمياء

الكلية :كلية العلوم

الجامعة: جامعة عين شمس

سنة التخرج: 2003

سنة المنح:

كلية العلوم

رسالة ماجيستير

اسم الطالب: أحمد شبل السيد سيد احمد

عنوان الرسالة: الثبات التركيبي للبولي ميثيل ميثاكريلات المحضر في وجود بعض متر اكبات العناصر الانتقالية (الدر اسات الطيفية و الثبات الضوئي)

الضوئى) اسم الدرجة : ماجيستير

لجنة الإشراف

د / محمد احمد محمد مکیوی أستاذ	أستاذ الكيمياء الفيزيائية – كلية العلوم
	– جامعة عين شمس.
الماني محمد احمد عبد الدايم محمد احمد عبد الدايم	مدرس الكيمياء الفيزيائية - كلية
العلو.	العلوم – جامعة عين شمس.
الشريف عمر حسن موسى مدر	مدرس الكيمياء الفيزيائية - جامعة
	مصر الدولية.

لجنة الحكم

أستاذ الكيمياء الفيزيائية – علوم عين	۱. د / محمد احمد محمد مکیوی
شمس.	
أستاذ الكيمياء الفيزيائية – علوم طنطا.	ا. د/ صفاء الدين حسن عطيو
أستاذ كيمياء السيليكون – معهد بحوث	ا. د / نظمی عباس رمضان
البترول.	

تاريخ البحث: / /

الدراسات العليا

أجيزت الرسالة بتاريخ: / / ٢٠٠٨ موافقة مجلس الجامعة / / ٢٠٠٨ ختم الإجازة : مو افقة مجلس الكلية / / ۲۰۰۸

Courses studied by the candidate in partial fulfillment of the requirements for the (M.Sc.) degree:

- 1) Polymer Chemistry.
- 2) Catalysis.
- 3) Surface Chemistry.
- 4) Advanced Chemical Kinetics.
- 5) Cement Chemistry.
- 6) Advanced Electrochemistry.
- 7) Corrosion Chemistry.
- 8) Statistical Thermodynamics.
- 9) Quantum Mechanics.
- 10) Introduction to computer programming.

Abstract

Poly methyl methacrylate (PMMA) was synthesized using different concentrations of cobalt tetraphenyl porphyrin (CoTPP) as a catalyst in presence of sodium bisulphite (NaHSO₃) as an initiator. The molecular weights and stability of the polymers against degradation by thermal and y-radiation tools were investigated. FT-IR (Fourier Transform Infra Red), Gel Permeation Chromatography (GPC), Thermal Gravimetric Analysis (TGA), γ-radiation source and Hardness Shore D device were used as tools for characterizing PMMA structure, molecular weights, resistance to thermal and γ -radiation degradation and its hardness values. The convincingly reported results indicate the ability of such polymers to resist both thermal and radiation effects and also their higher strengths compared with pure polymer. Schemes of PMMA reaction mechanism in presence of the catalyst and the initiator in addition to either degradation schemes were suggested according to influential reaction parameters.

Acknowledgments

Thanks first and last to **Allah** for the utmost help and support during this work.

I am greatly indebted to **Prof. Dr. Mohamed A. M. Mekewi**, Professor of Physical Chemistry, Faculty of Science, Ain Shams University, for suggesting the point, his supervision, valuable leading comments during the progress of this work and critical reading and reviewing of this work.

The author is also grateful to **Dr. Hany M. A. Abdel dayem**, Lecturer of Physical Chemistry, Faculty of Science, Ain Shams University and **Dr. Sherif O. H. Moussa**, Lecturer of Physical Chemistry, Misr International University., for their supervision, stimulating guidance, valuable discussion and suggestions.

My thanks are also passed to the staff members and colleagues of Chemistry Department, Egyptian Atomic Energy Authority, Petroleum Research Institute and National Research Center for the various help they offered me throughout this study.

Sincere thanks are also due to **My Family** who supported me greatly during the preparation of this work.

List of Contents

<u>Content.</u>	<u>Page</u>
List of Figures	III
List of Tables	VI
Abstract	VII
Introduction	1
Chapter 1- Background and literatures survey	. 5
1.1 Conventional Free Radical Polymerization	5
1.2 Catalytic Chain Transfer Polymerization	7
1.3 Catalytic polymerization using organometallic complexes	9
1.4 Catalytic polymerization of MMA using organometallic complexes	31
1.5 Metallo-porphyrins as catalysts for	20
polymerization	38
1.5.1 Porphyrins and metallo-porphyrin	20
complexes in general	
1.5.2 The materials chemistry of porphyrins and	
metalloporphyrin	
macromolecular synthesis	41
1.5.4 Metalloporphyrins containing transition	41
metals	49
1.5.5 Catalytic polymerization of MMA over	77
metalloporphyrins	60
Aim of the present work	64
Chapter 2- Experimental details	65
2.1. Materials and Solution Polymerization	<i>-</i> -
Process	65
2.1.1 Solvents purification	65

Content.	Page
2.1.1.1 Acetone purification	65
2.1.1.2 Methanol purification	
2.1.1.3 Toluene purification	
2.1.2 Monomer (MMA) purification	
2.1.3 Cobalt (II) Tetraphenyl Porphyrin	
(CoTPP)	67
2.1.4 Optimization of solution catalytic	
polymerization of MMA at different	
catalyst concentration, temperature and	
reaction period	
2.1.4.1 The polymerization process	
2.1.4.2 Calculation of the conversion /6 2.2. Polymer characterization (Techniques)	
2.2. I orymer characterization (Techniques)	70
Chapter 3- Results and discussion	75
3.1. Structure confirmation	75
3.1.1 Structural confirmation of Cobalt	
Tetraphenyl Porphyrin (CoTPP)	
3.1.2 PMMA structure confirmation	76
3.2. Conversion % and CoTPP concentration	00
relationship profile	
3.3. Proposed polymerization pathway	
3.5. Thermal degradation mechanism	
3.6. γ ₋ radiation degradation profile	
3.7. Radiation degradation mechanism	
3.8. Mechanical properties profile	
Summann and according	112
Summary and conclusions	112
References	113
Arabic Summary.	

List of Tables

<u>Table.</u>	<u>Page</u>	9
	Table (1) Summary of polymerization processes	
	carried over different organo-metallic	
	complexes since 1964 up to now)
	Table (2) The frequencies differences and assignments	
	for PMMA for the FT-IR spectra of	
	syndiotactic and isotactic polymers 8	7
	Table (3) Conversion % of PMMA, number and weight	
	average molecular weights and polydispersity	
	related to CoTPP concentration 89	9
	Table (4) The thermal degradation behavior of PMMA	
	prepared in absence and presence of CoTPP	
	at 0.05 M NaHSO ₃ 10	3
	Table (5) The thermal degradation behavior of PMMA	
	prepared in absence and presence of CoTPP	
	at 0.1 M NaHSO ₃ 10	4
	Table (6) Effect of γ. radiation on number and weight	
	average molecular weights on CoTPP	
	catalyzedPMMA before and after	
	irradiation 106	,
	Table (7) Percentage variation on number, weight	
	average molecular weights and polydispersity	
	index of CoTPP catalyzed PMMA 107	7

List of Figures

Fig. (1) Variation of number of publications of catalytic polymerization using porphyrin from 1980 up to 2006	42
	42
to 2006	42
Fig. (2) Schematic representation of addition	
polymerization	44
Fig. (3a) Structure of Al, Zn, Mn, Co and Rh	
Metalloporphyrins used for controlled	
macromolecular synthesis	46
Fig. (3b) Structures of Aluminum metalloporphyrins	
used for controlled macromolecular	
synthesis	47
Fig. (3c) Structures of different monomers used for	
controlled polymerization with	
metalloporphyrins	48
Fig. (4) Immortal polymerization of 1,2-	
epoxypropane	51
Fig. (5) Relationship between molecular weight (Mn) ,	
molecular weight distribution (M_w/M_n) , and	
monomer conversion during the	
polymerization of methyl acrylate	54
Fig. (6) Cobalt tetraphenyl porphyrin (CoTPP)	
Fig. (7) FT IR spectra for CoTPP complex	

Fig. (8) FT-IR spectra profiles of blank and catalyzed	
PMMA prepared in presence of 0.05 M	
NaHSO ₃ (a-g)	77
Fig. (9) FT-IR spectra profiles of blank and catalyzed	
PMMA prepared in presence of 0.1 M	
NaHSO ₃ (a-g)	82
Fig. (10) Relation between the CoTPP concentrations	
and PMMA conversion % at [NaHSO ₃]	
of 0.05M	90
Fig. (11) Relation between the CoTPP concentrations	
and PMMA conversion % at [NaHSO ₃]	
of 0.1M	91
Fig. (12) The effect of CoTPP concentrations on	
PMMA polydispersity at NaHSO ₃	
concentration of 0.05 M	93
Fig. (13) The effect of CoTPP concentrations on	
PMMA polydispersity at NaHSO ₃	
concentration of 0.1 M	93
Fig. (14) Thermogravimetric (TG) profiles of blank	
and catalyzed PMMA (a-l)	96
Fig. (15) Effect of γ-radiation on percent depreciation	
weight average molecular weight	107
Fig. (16) Effect of γ-radiation on percent depreciation	
number average molecular weight	108