

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

ELECTRICAL POWER AND MACHINES DEPARTMENT

Protection for Flexible Alternating-Current Transmission Systems

A Thesis submitted for the Requirements of the Degree of DOCTOR OF PHILOSOPHY
In

Electrical Engineering (POWER AND MACHINES)
By

AMR MOHAMED IBRAHIM HASSAN

B. Sc. in Elect. Eng., M. Sc. in Elect. Eng., Ain Shams University

SUPERVISED BY

Prof. MOHAMED MOHAMED MANSOUR Dr. SAID FOUAD MEKHAMER Dr. MOSTAFA IBRAHIM MAREI

Electrical Power and Machines Department
Faculty of Engineering
Ain Shams University
Egypt

CAIRO 2008

Abstract

FACTS is a new technology using power electronics for controlling the parameters and structures of power systems for improving the power transfer capability of the system.

Thyristor-Controlled Series Capacitor (TCSC) is a series FACTS device which allows rapid and continuous changes of the transmission line impedance. However, this in turn introduces problems in conventional distance protection.

The Static Synchronous Compensator (STATCOM) is introduced as a powerful FACTS tool for reactive power compensation. The measured impedance by distance relay at the relaying point in the presence of a STATCOM on the transmission line depends on the controlling parameters of STATCOM and on its installation location. The conventional distance relay characteristics are greatly subjected to maloperation in the form of over-reaching or under-reaching the fault point.

This thesis proposes an approach based on Artificial Neural Networks (ANN) using the Total Least Square-Estimation of Signal Parameters via Rotational Invariance Technique (TLS-ESPRIT) for fault type classification and faulted phase selection to be used in the protection of series compensated (TCSC) transmission lines and also for the protection of a transmission line employing STATCOM. The required features for the proposed algorithm are extracted from transient currents and voltages waveforms measured at the substation using TLS-ESPRIT. Since these transient waveforms are considered as a summation of damped sinusoids, TLS-ESPRIT is used to estimate different signal parameters mainly damping factors and frequencies of different modes contained in the signal. Those features can then be employed for fault type classification and faulted phase selection.

Two different learning algorithms are used for training the neural network: Back propagation (BP) and Particle Swarm Optimization techniques (PSO).

System simulation and results which are presented and analyzed in this thesis indicate the feasibility of using neural networks with TLS-ESPRIT in the protection of series compensated (TCSC) transmission lines and for the transmission lines which using STATCOM.

Acknowledgement

Thanks my God, you give me the power to continue. Thanks my God, you give me the ability to stand. I believe you helped me a lot. Thanks my God all times.

I am deeply grateful to Professor Mohamed Mohamed Mansour, Dr. Said Fouad Mekhamer and Dr. Mostafa Ibrahim Marei for their supervision, encouragement, stimulating discussion and instructions.

In fact, I can't express my thanks they should deserve. Indeed, they have done their best and directed me till the end of this work. Also, I must report my admission of their favors and their valuable instructions and directions. My great thank to them.

I would like to express my great thanks to my family, for their help, encouragement and patience all through this work.

Approval Sheet for the Thesis Entitled

Protection for Flexible Alternating-Current Transmission Systems

Prepared By

Eng.\ Amr Mohamed Ibrahim Hassan

B.Sc. Electrical Power Engineering

Submitted in partial fulfillment of the requirements for the Ph.D. degree in electrical engineering.

Approved By

Name	Signature
Prof. Dr. Mohamed Abd El-Alim El-Hadidy	
Consultant of Egyptian Electricity Transmission Company	
Prof. Dr. Ahmed Abd El-Sattar Abd El-Fattah	
Faculty of Engineering – Ain Shams University	
Prof. Dr. Mohamed Mohamed Mansour	
Faculty of Engineering – Ain Shams University	

جامعة عين شمس - كلية الهندسة

قسم هندسة القوى والآلات الكهربائية

تقرير موافقه على رسالة لدرجة الدكتوراة

عمرو محمد ابراهيم حسن

اسم الطالب

وقاية نظم النقل الكهربي المرن

عنوان الرسالة

لجنة الحكم على الرسالة

1- أ.د. محمد عبد العليم على الحديدي مستشار بالشركة القابضة لنقل الكهرباء

2- أ.د. أحمد عبد الستار عبد الفتاح

الأستاذ بقسم هندسة القوى والآلات الكهربية جامعة عين شمس.

وعن لجنة الإشراف على الرسالة

3- أيد محمد محمد سيد منصور

الأستاذ بقسم هندسة القوى والآلات الكهربية جامعة عين شمس.

لدراسات العليا أجيزت الرسالة

ختم الإدارة

بتاریخ / /

مو افقة مجلس الكلية

مو افقة مجلس الجامعة

Approval Sheet

For The thesis:

Protection for Flexible Alternating-Current Transmission Systems

Presented by

Eng. AMR MOHAMED IBRAHIM HASSAN

Submitted in partial fulfillment of the requirements for the Ph.D degree in electrical engineering

Approved by

<u>Name</u> <u>Signature</u>

Prof. Dr. MOHAMED MOHAMED MANSOUR

Dr. SAID FOUAD MEKHAMER

Dr. MOSTAFA IBRAHIM MAREI

Date: / / 2008

CONTENTS

Subject	Page
CHAPTER (1): INTRODUCTION	
1.1 GENERAL	1
1.2 THESIS OBJECTIVE	1
1.3 THESIS CONTENTS	2
CHAPTER (2): PROTECTION FOR FLEXIBLE ALTERNA	
CURRENT TRANSMISSION SYSTEMS: BA	SIC
CONCEPTS AND LITERATURE	4
2.1GENERAL	4
2.2 Thyristor Controlled Series Capacitor (TCSC)	5
2.3 Static Synchronous Compensator (STATCOM)	7
2.4 THE IMPACT OF TCSC ON PROTECTION	8
2.5 THE IMPACT OF STATCOM ON PROTECTION	8
2.6 DIGITAL RELAYING ALGORITHMS	10
2.7 PROTECTION OF TRANSMISSION LINES	10
2.7.1 TECHNIQUES BASED ON TRAVELING WAVE	11
2.7.2 PHASE COMPARISON TECHNIQUES	11
2.7.3 DIRECTIONAL COMPARISON RELAY	12
2.8 ADAPTIVE PROTECTION: CONCEPT AND	10
RELATED ISSUES	12
2.9 ANN BASED FAULT DIAGNOSIS: A REVIEW	17
2.10 A SURVEY ON APPLICATION OF SWARM INTELLIGENCE COMPUTATION TO ELECTRC	
POWER SYSTEM	22
2.10.1 SWARM INTELLIGENCE COMPUTATION	23
2.10.1 SWARM INTELLIGENCE COMPUTATION 2.10.2 APPLICATIONS OF SWARM INTELLIGENCE	23
IN POWER SYSTEM	25
2.11 THE TOTAL LEAST SQUARES ESPRIT ALGORITHM	26
2.11 THE TOTAL LEAST SQUARES ESTRIT ALGORITHM	20
CHAPTER (3): THYRISTOR CONTROLLED SERIES	
CAPACITOR (TCSC)	
3.1 INTRODUCTION	28
3.2 CONVENTIONAL SERIES COMPENSATION SCHEME	29
3.3 OVER-VOLTAGE PROTECTION OF SERIES	
CAPACITORS (METAL OXIDE VARISTOR)	30
3.3.1 NUMERICAL SIMULATION OF MOV-PROTECTED	
SERIES CAPACITORS	32
3.4 THYRISTOR CONTROLLED SERIES COMPENSATION	36

3.4.1 TCSC Mode	36
3.4.2 Thyristor Switched Reactor Mode (TSR)	36
3.4.3 Waiting Mode	37
3.5 DESCRIPTION OF THE STUDY SYSTEM	37
3.5.1 Metal Oxide Varistor Chosen	39
3.6 FAULT-INDUCED SIGNALS	39
3.7 SIMULATION RESULTS	40
CHAPTER (4): THE STATIC COMPENSATOR (STATCOM)	
4.1 INTRODUCTION	46
4.2 DESCRIPTION OF THE STUDY SYSTEM	47
4.3 SIMULATION RESULTS	48
CHAPTER (5): TLS-ESPRIT	
5.1 INTRODUCTION	56
5.2 FAULT TRANSIENT MODEL	56
5.3 PROPOSED SYSTEM ARCHITECTURE	57
5.4 TLS-ESPRIT ALGORITHM	58
5.5 MATLAB NUMERICAL EXAMPLES	65
5.6 TEST SYSTEM SIMULATION RESULTS	66
CHAPTER (6): THE PARTICLE SWARM OPTIMIZER:	
CHAPTER (6): THE PARTICLE SWARM OPTIMIZER: AN OVERVIEW	
` '	71
AN OVERVIEW	71 71
AN OVERVIEW 6.1 GENERAL	
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION	71
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING	71 73
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING 6.4 EVOLUTIONARY COMPUTATION	71 73 74
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING 6.4 EVOLUTIONARY COMPUTATION 6.5 THE EVOLUTIONARY PROCESS	71 73 74 75
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING 6.4 EVOLUTIONARY COMPUTATION 6.5 THE EVOLUTIONARY PROCESS 6.6 EVOLUTIOANRY ALGORITHMS	71 73 74 75 75
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING 6.4 EVOLUTIONARY COMPUTATION 6.5 THE EVOLUTIONARY PROCESS 6.6 EVOLUTIOANRY ALGORITHMS 6.6.1 Evolutionary Programming	71 73 74 75 75 77
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING 6.4 EVOLUTIONARY COMPUTATION 6.5 THE EVOLUTIONARY PROCESS 6.6 EVOLUTIOANRY ALGORITHMS 6.6.1 Evolutionary Programming 6.6.2 Evolution Strategies	71 73 74 75 75 77 78
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING 6.4 EVOLUTIONARY COMPUTATION 6.5 THE EVOLUTIONARY PROCESS 6.6 EVOLUTIOANRY ALGORITHMS 6.6.1 Evolutionary Programming 6.6.2 Evolution Strategies 6.6.3 Genetic Algorithms	71 73 74 75 75 77 78 79
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING 6.4 EVOLUTIONARY COMPUTATION 6.5 THE EVOLUTIONARY PROCESS 6.6 EVOLUTIOANRY ALGORITHMS 6.6.1 Evolutionary Programming 6.6.2 Evolution Strategies 6.6.3 Genetic Algorithms 6.6.4 Genetic Programming	71 73 74 75 75 77 78 79 80
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING 6.4 EVOLUTIONARY COMPUTATION 6.5 THE EVOLUTIONARY PROCESS 6.6 EVOLUTIOANRY ALGORITHMS 6.6.1 Evolutionary Programming 6.6.2 Evolution Strategies 6.6.3 Genetic Algorithms 6.6.4 Genetic Programming 6.7 PARTICLE SWARM OPTIMIZER	71 73 74 75 75 77 78 79 80 82
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING 6.4 EVOLUTIONARY COMPUTATION 6.5 THE EVOLUTIONARY PROCESS 6.6 EVOLUTIOANRY ALGORITHMS 6.6.1 Evolutionary Programming 6.6.2 Evolution Strategies 6.6.3 Genetic Algorithms 6.6.4 Genetic Programming 6.7 PARTICLE SWARM OPTIMIZER 6.7.1 Biological and Social behavior 6.7.2 PSO Language and Terminology 6.7.3 The Standard PSO Algorithm	71 73 74 75 75 77 78 79 80 82 83
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING 6.4 EVOLUTIONARY COMPUTATION 6.5 THE EVOLUTIONARY PROCESS 6.6 EVOLUTIOANRY ALGORITHMS 6.6.1 Evolutionary Programming 6.6.2 Evolution Strategies 6.6.3 Genetic Algorithms 6.6.4 Genetic Programming 6.7 PARTICLE SWARM OPTIMIZER 6.7.1 Biological and Social behavior 6.7.2 PSO Language and Terminology	71 73 74 75 75 77 78 79 80 82 83 84
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING 6.4 EVOLUTIONARY COMPUTATION 6.5 THE EVOLUTIONARY PROCESS 6.6 EVOLUTIOANRY ALGORITHMS 6.6.1 Evolutionary Programming 6.6.2 Evolution Strategies 6.6.3 Genetic Algorithms 6.6.4 Genetic Programming 6.7 PARTICLE SWARM OPTIMIZER 6.7.1 Biological and Social behavior 6.7.2 PSO Language and Terminology 6.7.3 The Standard PSO Algorithm	71 73 74 75 75 77 78 79 80 82 83 84 88
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING 6.4 EVOLUTIONARY COMPUTATION 6.5 THE EVOLUTIONARY PROCESS 6.6 EVOLUTIOANRY ALGORITHMS 6.6.1 Evolutionary Programming 6.6.2 Evolution Strategies 6.6.3 Genetic Algorithms 6.6.4 Genetic Programming 6.7 PARTICLE SWARM OPTIMIZER 6.7.1 Biological and Social behavior 6.7.2 PSO Language and Terminology 6.7.3 The Standard PSO Algorithm 6.7.4 The Relation between PSO and EA	71 73 74 75 75 77 78 79 80 82 83 84 88 93
AN OVERVIEW 6.1 GENERAL 6.2 INTRODUCTION 6.3 SOFT COMPUTING 6.4 EVOLUTIONARY COMPUTATION 6.5 THE EVOLUTIONARY PROCESS 6.6 EVOLUTIOANRY ALGORITHMS 6.6.1 Evolutionary Programming 6.6.2 Evolution Strategies 6.6.3 Genetic Algorithms 6.6.4 Genetic Programming 6.7 PARTICLE SWARM OPTIMIZER 6.7.1 Biological and Social behavior 6.7.2 PSO Language and Terminology 6.7.3 The Standard PSO Algorithm 6.7.4 The Relation between PSO and EA 6.8 APPLICATIONS OF PSO	71 73 74 75 75 77 78 79 80 82 83 84 88 93

_	\sim	\sim		T	1 .
h	y	')	Swarm	1 Ke	havior
v		-	D Wall.	טע ו	ma v i Oi

CHAPTER (7): Adaptive Protection for FACTS using an	
Approach Based on Artificial Neural	
Networks using TLS_ESPRIT	
7.1 INTRODUCTION	98
7.2 TRANSMISSION LINE WITH TCSC SYSTEM	98
7.3 TRANSMISSION LINE WITH STATCOM SYSTEM	100
7.4 ADAPTIVE PROTECTION SCHEME	100
7.4.1 Neural Network	100
7.4.2 Neural Network Learning using Particle	
Swarm Optimizers	101
7.4.3 Neural Network Architectures	102
7.4.4 Feature Extraction	102
7.5 ARTIFICIAL NEURAL NETWORKS	103
7.5.1 The Network Topology	104
7.6 NETWORK TRAINING USING BACK-PROPAGATION	
ALGORITHM FOR THE PROTECTION OF (TCSC) SYSTEM	106
7.6.1 Artificial Neural Network-F (ANNF)	106
7.6.1.1 Test Results	108
7.6.2 Artificial Neural Networks (ANNA, ANNB, ANNC	
and ANNG)	109
7.6.2.1 Test Results	110
7.7 NETWORK TRAINING USING BACK-PROPAGATION	
ALGORITHM APPLIED FOR STATCOM POWER SYSTEM	111
7.7.1 Artificial Neural Network-F (ANNF)	111
7.7.1.1 Test Results	111
7.7.2 Artificial Neural Networks (ANNA, ANNB, ANNC	
and ANNG)	112
7.7.2.1 Test Results	113
7.8 NETWORK TRANING USING PARTICLE SAWRM	
OPTIMIZER TECHNIQUES	114
7.8.1 Training Phase	114
7.8.2 Testing Phase	115
7.9 CONCLUSION	116
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110
CHAPTER (8): CONCLUSIONS AND RECOMMENDATION	ONS
FOR FUTURE WORK	O140
8.1 CONCLUSIONS	133
8.2 RECOMMENDATIONS FOR FUTURE WORK	134
REFERENCES	135

LIST OF FIGURES

	Subject	Page
Fig (3.1)	Midpoint series compensation	31
Fig (3.2)	Line ends series compensation	31
Fig (3.3)	MOV protected series capacitor	33
Fig (3.4)	A reduced single phase circuit used in calculating the	
	fundamental impedance of the MOV/series capacitor	35
Fig (3.5)	Equivalent series impedance	35
Fig (3.6)	Thyristor control series capacitor	36
Fig (3.7)	Study system	38
Fig (3.8)	A Phase Current (kA), for line to line to ground	
	fault "A-B-G" at 30 % of line	41
Fig (3.9)	A Phase Current (kA), for line to line to ground	
	fault "A-B-G" at 70 % of line	41
Fig (3.10)	A Phase Current (kA), for line to ground	
	fault "A-G" at 30 % of line	42
Fig (3.11)	A Phase Current (kA), for line to ground	
	fault "A-G" at 70 % of line	42
Fig (3.12)	A Phase Voltage (kV), for line to ground	
	fault "A-G" at 70 % of line	43
Fig (3.13)	A Phase Voltage (kV), for line to ground	
	fault "A-G" at 30 % of line	43
Fig (3.14)	A Phase Voltage (kV), for line to line to	
	ground fault "A-B-G" at 70 % of line	44
Fig (3.15)	A Phase Voltage (kV), for line to line to	
	ground fault "A-B-G" at 30 % of line	44
Fig (3.16)	B Phase Voltage (kV), for line to line to	
	ground fault "A-B-G" at 30 % of line	45
Fig (3.17)	B Phase Current (kA), for line to line to	
	ground fault "A-B-G" at 70 % of line	45
Fig (4.1)	Static compensator (STATCOM) system	46
Fig (4.2)	Power system under study	47
Fig (4.3)	B Phase Voltage (kV), for line to line to	
	ground fault "A-B-G" at 70 % of line	49
Fig (4.4)	A Phase Voltage (kV), for 3 Phase to	
	ground fault "A-B-C-G" at 30 % of line	49
Fig (4.5)	A Phase Voltage (kV), for 3 Phase to	
	ground fault "A-B-C-G" at 70 % of line	50

Fig (4.6)	A Phase Voltage (kV), for line to line to	
	ground fault "A-B-G" at 30 % of line	50
Fig (4.7)	A Phase Voltage (kV), for line to line to	
	ground fault "A-B-G" at 70 % of line	51
Fig (4.8)	A Phase Voltage (kV), for line to ground	
	fault "A-G" at 30 % of line	51
Fig (4.9)	A Phase Voltage (kV), for line to ground	
	fault "A-G" at 70 % of line	52
Fig (4.10)	A Phase Current (kA), for line to ground	
	fault "A-G" at 70 % of line	52
Fig (4.11)	A Phase Current (kA), for line to ground	
	fault "A-G" at 30 % of line	53
Fig (4.12)	A Phase Current (kA), for line to line to	
	ground fault "A-B-G" at 70 % of line	53
Fig (4.13)	A Phase Current (kA), for line to line to	
	ground fault "A-B-G" at 30 % of line	54
Fig (4.14)	A Phase Current (kA), for 3 Phase to	
	ground fault "A-B-C-G" at 70 % of line	54
Fig (4.15)	A Phase Current (kA), for 3 Phase to	
	ground fault "A-B-C-G" at 30 % of line	55
Fig (4.16)	B Phase Voltage (kV), for line to line to	
	ground fault "A-B-G" at 70 % of line	55
Fig (5.1)	Fault classification algorithm	58
Fig (5.2)	Phase (A) current poles for line to line	
	to ground fault at 30 % of transmission line length	67
Fig (5.3)	Phase (A) current poles for line to line	
	to ground fault at 70 % of transmission line length	67
Fig (5.4)	Phase (A) voltage poles for line to ground	
	fault at 70 % of transmission line length	68
Fig (5.5)	Phase (A) voltage poles for line to ground	
	fault at 30 % of transmission line length	68
Fig (5.6)	Phase (A) current poles for line to line to	
	ground fault at 70 % of transmission line length	69
Fig (5.7)	Phase (A) voltage poles for line to ground	
	fault at 70% of transmission line length	69
Fig (5.8)	Phase (A) voltage poles for line to line to	
	ground fault at 30 % of transmission line length	70
Fig (5.9)	Phase (A) current poles for three line to ground	
	fault at 30 % of transmission line length	70
Fig (6.1)	Natural analogy of the PSO search mechanism	

	es searching a field for the location of the most flowers	
(b) All	the bees swarm around the best location over-flying it	
onl	y to be pulled back in after failing to find a higher	
con	centration of flowers elsewhere	84
Fig (6.2)	The three components of the velocity update	
(equation in a 2-D space	91
Fig (6.3)	The position update of agents in a 2-D space	92
Fig (7.1)	Phase A-to-ground fault	99
Fig (7.2)	Architecture of the neural networks	
	$(ANN_f,ANN_A,ANN_B,ANN_C $ and $ANN_G)$	104
Fig (7.3)	The ANN proposed scheme	106
Fig (7.4)	3-Ph. Voltages (kV), 3-Ph. Currents (kA),	
	ANNs output for line to ground fault	
	"A- G" at 30 % of line (TCSC) (BP)	125
Fig (7.5)	3-Ph. Voltages (kV), 3-Ph. Currents (kA),	
	ANNs output for line to ground fault "A- G"	
	at 70 % of line (TCSC) (BP)	126
Fig (7.6)	3-Ph. Voltages (kV), 3-Ph. Currents (kA),	
	ANNs output for line to ground fault "A-B-G"	
	at 30 % of line (TCSC) (PSO)	127
Fig (7.7)	3-Ph. Voltages (kV), 3-Ph. Currents (kA),	
	ANNs output for line to ground fault "A-B-G"	
	at 70 % of line (TCSC) (PSO)	128
Fig (7.8)	3-Ph. Voltages (kV), 3-Ph. Currents (kA),	
	ANNs output for line to ground fault "A-G"	
	at 30 % of line (STATCOM) (BP)	129
Fig (7.9)	3-Ph. Voltages (kV), 3-Ph. Currents (kA),	
	ANNs output for line to ground fault "A-B-G"	
	at 70 % of line (STATCOM) (BP)	130
Fig (7.10)	3-Ph. Voltages (kV), 3-Ph. Currents (kA),	
	ANNs output for line to ground fault "A-B-G"	
	at 70 % of line (STATCOM) (PSO)	131
Fig (7.11)	3-Ph. Voltages (kV), 3-Ph. Currents (kA),	
<u> </u>	ANNs output for line to ground fault "A-B-G"	
	at 70 % of line (STATCOM) (PSO)	132

LIST OF TABLES

	Subject	Page
Table (2-1)	Adaptive transmission system protection techniques	16
Table (6-1)	Some Keywords Used to Describe the PSO Algorithm	87
Table (7-9)	Training phase (using PSO)	115
Table (7-1)	TCSC/BP Results of training ANN-F	117
Table (7-3)	TCSC/BP Results of training ANN (A,B,C&G)	117
Table (7-2)	TCSC/BP Results of testing ANN-F	118
Table (7-4)	TCSC/BP Results of testing ANN(A,B,C&G)	118
Table (7-5)	STATCOM/BP Results of training ANN-F	119
Table (7-7)	STATCOM/BP Results of training ANN(A,B,C&G)	119
Table (7-6)	STATCOM/BP Results of testing ANN-F	120
Table (7-8)	STATCOM/BP Results of testing ANN(A,B,C&G)	120
Table (7-10)	TCSC/PSO Results of training ANN-F	121
Table (7-11)	TCSC/PSO Results of training ANN(A,B,C&G)	121
Table (7-12)	TCSC/PSO Results of testing ANN-F	122
Table (7-13)	TCSC/PSO Results of testing ANN(A,B,C&G)	122
Table (7-14)	STATCOM/PSO Results of training ANN-F	123
Table (7-15)	STATCOM/PSO Results of training ANN(A,B,C&G)	123
Table (7-16)	STATCOM/PSO Results of testing ANN-F	124
Table (7-17)	STATCOM/PSO Results of testing ANN(A,B,C&G)	124

Chapter 1

INTRODUCTION

1.1 GENERAL

The use of power electronic devices in AC power systems to improve the power transfer capability of the system forms the basis of the concept of Flexible AC Transmission Systems (FACTS). While the use of FACTS controller aids in the power transfer capability and control of the power system, certain other problems emerge in the field of power system protection, in particular the line protection.

There is a need for an adaptive relay characteristic since the system parameters and configuration are rapidly changed by the FACTS devices.

1.2 THESIS OBECTIVE

The objective of this research is to develop an adaptive protection scheme based on the artificial neural network algorithm using Total Least Square- Estimation of Signal Parameters via Rotational Invariance Technique (TLS-ESPRIT) for two different types of FACTS one of them is fixed series in the transmission lines: Thyristor Controlled Series Capacitor (TCSC) and the other is fixed in shunt in transmission line: Static Synchronous Compensator (STATCOM). TLS-ESPRIT extracts the transient voltage and current modal information which is functions in the fault parameters. Then, a Feed Forward-Artificial Neural Network (FF-ANN) is employed to classify the fault type and select the faulted phase by using the extracted modal information. Using two different learning algorithms for training the neural network: Back propagation (BP) and Particle Swarm Optimization techniques (PSO).