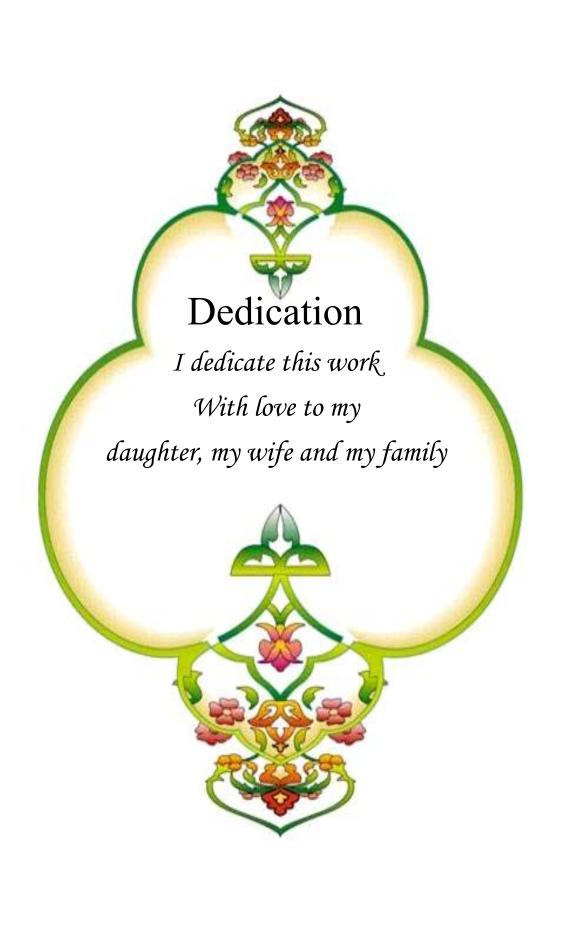
FLUID INTAKE AND WEIGHT LOSS DURING THE FIRST TEN DAYS OF LIFE AND RISK OF BRONCHOPULMONARY DYSPLASIA IN (VLBW) INFANTS

Thesis
Submitted for partial fulfillment of
Master degree in Pediatrics

Presented By
Amir Mohsen Mahmoud Elagamy
(M.B,B.CH. ۲۰۰۲)

Faculty of medicine Mansoura University

Under Supervision of


Prof. Dr. Mohamed Nasr EL-Din El-Barbary

Professor of Pediatrics Faculty of medicine Ain Shams University

Dr. Maha Hassan Mohamed

Lecturer of Pediatrics Faculty of medicine Ain Shams University

Faculty of Medicine Ain Shams University

ACKNOWLEDGMENT

First and Foremost, Thanks are all to "ALLAH".

It is a great honor to me to express my extreme thankfulness, deep appreciation and profound gratitude to *Prof. Dr. Mohammed Nasr EL-din El-barbary*, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his generous help, continuous guidance and supervision, kind encouragement, fruitful advice throughout the work. So thanks means nothing to what he had done for me.

I would like to express my unlimited gratitude to Dr. Maha~Hassan~Mohamed, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University for her supervision, distinctive orientation and effective help. She offered me her great enthusiastic support and patience, enriching me with her vast experience and continuous advices which helped me to overcome many difficulties.

LIST OF CONTENTS

Fig. No.	Title	Page No.
List of Tables		I
List of Figures		III
List of Abbreviation.	s	IV
Introduction		1
Aim of the Work		٣
Review of Literature		
o Premature and lo	w birth weight infants	٤٤
o Bronchopulmona	ry Dysplasia	٤٠
Subjects and Methods		٨٢
Results		٩١
Discussion		110
Summary		١٣٠
Conclusion		172
Recommendations		170
References		177
Appendix		V <i>F1</i>
Arabic Summary		

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Identifiable causes of preterm birth	Λ
Table (7):	Factors often associated with intrauterine groverestriction	
Table (*):	Possible causes of respiratory failure premature infants	
Table (٤):	Neonatal problems associated with prematurinfants	
Table (0):	Suggested feeding regimen for preterm infar	nts ٣٣
Table (٦):	Phases of lung maturation	٤١
Table (V):	Diagnostic criteria and classification of BI severity	
Table (^):	Etiological factors in CLD	00
Table (٩):	Therapeutic Goals and Adverse Effects Treatment	
Table (\(\cdot\):	Sepsis score: examination of clinical a haematological symptoms in neonatal sepsis	
Table (۱۱):	Derivation of Hematologic Scores Accordito Hematologic Scoring System	· ·
Table (17):	Comparative study between group \(\) a group \(\) as regards some qualitati parameters:	ve

Comparative study between group v and
group v as regards some quantitative
parameters: 9٣
Comparative study between group \(\) and group \(\) as regards some studied parameters: \(\) 9 \(\)
Comparative study between group 1 and group 1 as regards respiratory data

LIST OF TABLES (Cont...)

Tab. No.	Title	Page No.
Table (١٦):	Comparative study between survivors and n survivors in group \	
Table (۱۷):	Comparative study of survivors and n survivors in group v as regards qualitatidata:	ive
Table (۱۸):	Comparative study between group v as group v as regards daily total fluid inta (parentral and enteral) (cc/kg/d)	ıke
Table (۱۹):	Comparative study between group \ a group \ as regards daily parentral flu (cc/kg/d)	uid
Table (۲۰):	Comparative study between group \(\) a group \(\) as regards daily enteral intake (cc/ d	
Table (۲۱):	Comparative study between group \(\) a group \(\) as regards daily fluid for parent drug intake (cc /day)	ral
Table (۲۲):	Comparative study between group \ a group \ as regards daily sodium inta (mEq/kg)	ıke
Table (۲۳):	Comparative study between group \(\text{a} \) a group \(\text{a} \) as regards daily weight loss (%)	
Table (Y £):	Odds ratio for death or BPD adjusted is selected clinical and demographic variables	

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1):	Assessment of gestational age – new Ballar score	
Figure (*):	Stages of lung development, potentially damaging factors, and types of lung injury	
Figure (*):	Airway and parenchymal damage in old an new bronchopulmonary dysplasia	
Figure (٤):	Mortality in group \(\gamma\) and group \(\gamma\).	٩٢
Figure (0):	Total fluid intake in group \(\) and group \(\).	90
Figure (٦):	Total parentral nutrition in group \(\) and group \(\).	90
Figure (v):	Intravenous fluid for medication in group \ and group \.	
Figure (^):	Enteral feeding in group \(\cdot\) and group \(\cdot\)	97
Figure (٩):	Sodium intake in group \ and group\	٩٧
Figure (۱۰):	Serum sodium in group \ and \	٩٧
Figure (۱۱):	Duration of CPAP (days) in group \(\text{and } \text{y} \)	
Figure (۱۲):	Fior of CPAP in group \ and group\	
Figure (۱۳):	Birth weight in surviving and non surviving infants in group \(\cdot\)	_
Figure (11):	Daily total fluid intake (parentral and enteral) is group v and v	
Figure (10):	Daily parentral fluid intake in group v and v	
Figure (17):	Daily sodium intake in group \ and group \	11

LIST OF ABBREVIATIONS

ABG Arterial blood gasses.

AGA Appropriate for gestational age.

APH Antepartum hemorrhage.

B.W Birth weight

BPD Broncho pulmonary dysphasia.

CBC Complete blood count.CI Confidence interval.CLD Chronic lung disease.

CPAP Continue positive airway pressure.

CRP C–reactive protein.

D.M Diabetes mellitus.

 \mathbf{D}_1 . **W** Dextrose \mathbf{V}_1 % in water

D.W Dextrose % in water

ELBW Extremely low birth weight.

FIO, Fraction of inspiratory oxygen.

G.A Gestational age.

H.S Highly significant.

ICH Intra cranial hemorrhage.

IUGR Intra uterine growth retardation.

IVH Intraventricular hemorrhage.

L/S ratio Lecithin to sphingomilin ratio.

LBW Low birth weight.

LGA Large for gestational age.

MOD Mode of delivery .

N.S Non significant .

NBW Normal birth weight.

NEC Necrotizing enterocolitis.

NICU Neonatal intensive care unit.

P Probability.

Pa O_Y Pressure o^Y.

PCO_Y Pressure co_Y.

PDA Patent ductus arteriosus.

PEEP Peak end expiratory pressure.

PIP Peak inspiratory pressure.

PPV Positive pressure ventilation.

PROM Premature rupture of membrane.

PT Preterm.

RDS Respiratory distress syndrome.

ROP Retinopathy of prematurity.

S Significant.

SD Standerd deviation.

SGA Small for gestational age.

SOY Oxygen saturation.
SOD Super oxide dismutase.

SRT Surfactant replacement therapy.

t Student t test

VEGF Vascular endothelial growth factor

VLBW Very low birth weight.

X' Chi square test.

INTRODUCTION

Infants were defined as suffering from Bronchopulmonary dysplasia (BPD) if they were on oxygen support $\geq \text{TA}$ days. These newborns were then reassessed when they reached TA weeks corrected GA (if GA < TY weeks) or at hospital discharge (*Ehrenkranz et al.*, Y···o).

Those who were room air at the time of reavaluation were classified as having mild BPD. Those receiving less than $\checkmark \cdot \%$ fraction of inspired oxygen (FiO \checkmark) were classified as having moderate BPD and those on FiO $\checkmark > \checkmark \cdot \%$ and/or continous positive airway pressure (CPAP) and/or mechanical ventilation were classified as having severe BPD (*Ehrenkranz et al.*, $\checkmark \cdot \cdot \circ$).

BPD is still the most common cause morbidity among (VLBW) newborns, although the incidence, risk factors and severity of the disease have changed substantially since the introduction of new treatments and mechanical ventilation techniques (*Monte et al.*, **...**).

Pathogenesis of BPD is multifactorial, including immaturity, barotrauma or volutrauma and oxygen toxicity (*Bancalari et al.*, **.****).

Excessive ingestion of liquids and sodium in these high risk neonates during the early postnatal period has been suggested as an additional risk factor for the development of BPD (*Hartnoll et al.*, **.*.).

Body water content is very high in VLBW infant and a large proportion of the body water is in the extracellular fluid (ECF) compartment. During the first week of life, there is a physiologic contraction of the ECF which is associated with weight loss during the early neonatal period. This is achieved by fluid intake that is less than the amount of water excreted through the kidney in the form of postnatal diuresis and via insensible water loss. It is postulated that this physiologic process of ECF contraction may not occur if excessive fluid and/or sodium is given during the critical period (*Oh et al.*, **.***).

High fluid intake with persistent expanded ECF is associated with a higher incidence of symptomatic patent ductus arteriosus (PDA) and necrotizing enterocolitis (NEC), also there is suggestive evidence that PDA is associated with an increased incidence of (BPD) (*Oh et al.*, **\(\mathcal{T}\cdot\)\).

Strategies and interventions that might reduce the incidence of BPD have been widely investigated. Recently, on a multicenter study, it was reported that administration of caffeine during the first days of life was capable of reducing (BPD) incidence in a population of VLBW newborns (*Schmidt et al.*, **••***).

AIM OF THE WORK

The aim of this work is to demonstrate the association between fluid intake and weight loss during the first ' days of life and the risk of bronchopulmonary dysplasia (BPD) in VLBW infants.

Chapter (1)

PREMATURE AND LOW BIRTH WEIGHT INFANTS

Definitions:

The World Health Organization defined **preterm infants**, as live born infants delivered before $\[mathbb{r}\]$ weeks from the first day of last menstrual period. Birth weight is governed by two major considerations, the duration of gestation and the intrauterine growth rate. **Low birth weight (LBW)** that is birth weight equal to or less than $\[mathbb{r}\]$ or may be caused by a short period of gestation, intrauterine growth retardation (IUGR) or both (*Graham*, $\[mathbb{r}\]$.

Very low birth weight (VLBW) infants are infants who weight less than 'o'' gm, while extremely low birth weight infants (ELBW) are infants who weigh less than ''' gm. Both of them are predominantely premature, but some are small for date at a later gestation (*Stoll and Kleigman*, '''').

LBW infants can be grouped into three categories, firstly, infants with LBW who are prematurely delivered (before TV weeks) and are appropriate for gestational age (Preterm- AGA). Secondly, infants with LBW who are born at TV weeks or later, and inappropriately small for gestational age (SGA). Lastly, infants who are prematurely

delivered but whose weight is still inappropriately small for gestation age (Preterm -SGA) (Lee and Cloherty, $r \cdot \cdot \lambda$).

In developing countries, approximately $\checkmark \cdot \%$ of LBW have intrauterine growth retardation, while in developed countries $\checkmark \cdot \%$ of LBW have IUGR. Intrauterine growth retarded infant (I U G R), have a greater morbidity and mortality than appropriately grown gestational age infants (*Stoll and Kleigman*, $\checkmark \cdot \cdot \land$).

Incidence:

The incidence of prematurity is very difficult to be determined, until recently, all low birth weight babies were lumped together as being premature. The incidence of hospital births below Your gm, is approximately Y.7% in the United States, 7.0% in Great Britain, 0.0% in Sweden, Y% in France, and You in Japan. The low birth weight rate has increased because of an increased number of preterm births. You of LBW infants in the United States have IUGR and were born after YV weeks. VLBW infants weigh less than Your gm and are predominately premature. In the United States, the VLBW rate is approximately Y.5% and their survival is directly related to birth weight (Horber et al., Your).

In order to have the incidence of prematurity in Egypt, we should have national or semi-national survey and this