Epidemiological and Environmental Study of Malignant Pleural Mesothelioma Cases in Shubra El-Kheima Region

By

Hussein Fatehy Mahmoud

MBBCH, Ain Shams University, 1947.

Master in Chest Diseases, Ain Shams University, 1949.

A thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy
In
Environmental Sciences

Department of Medical Sciences
Institute of Environmental Studies and Research
Ain Shams University

Y . . V

Epidemiological and Environmental Study of Malignant Pleural Mesothelioma Cases in Shubra El-Kheima Region

A thesis

Submitted for the PhD. Degree in Environmental Medical Sciences

Presented by

Hussein Fatehy Mahmoud MBBCH, Msc. (chest)

The Supervisors

Prof. Dr./ Mokhtar Taha Madkour Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Dr./ Mahmoud Serry El Bokhary

Assistant Professor of Medical Sciences

Institute of Environmental Studies and Research

Ain Shams University

Dr./ Hala Ibrahim Awad Alla
Lecturer of Medical Sciences
Institute of Environmental Studies and Research
Ain Shams University

Dr./ Abd El Hameed A-Awad

Professor of Air Pollution

National Research Center

Ain Shams University
Institute of Environmental Studies and Research
Department of Medical Sciences

Epidemiological and Environmental Study of Malignant Pleural Mesothelioma Cases in Shubra El-Kheima Region

By

Hussein Fatehy Mahmoud

MBBCH, Ain Shams University, 1911.

Master in Chest Diseases, Ain Shams University, 1914.

A thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy
In
Environmental Sciences

Department of Medical Sciences Institute of Environmental Studies and Research Ain Shams University

Under supervision of:

1. Prof. Dr./ Mokhtar Taha Madkour

Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Y. Dr./ Mahmoud Serry El Bokhary

Assistant Professor of Medical Sciences Institute of Environmental Studies and Research Ain Shams University

r. Dr./ Hala Ibrahim Awad Alla

Lecturer of Medical Sciences Institute of Environmental Studies and Research Ain Shams University

£. Dr./ Abd El Hameed A-Awad

Professor of Air Pollution National Research Center

APPROVAL SHEET

Epidemiological and Environmental Study of Malignant Pleural Mesothelioma Cases in Shubra El-Kheima Region

By

Hussein Fatehy Mahmoud

MBBCH, Ain Shams University, 1911.

Master in Chest Diseases, Ain Shams University, 1914.

This Thesis Towards a Doctor Degree of philosophy in Environmental Sciences Has Been Approved by:

Name Signature

1. Prof. Dr./ Mostafa Hassan Ragab

Prof. and Head of Medical Science Institute of Environment Studies & Reasearch, Ain Shams University

Y. Prof. Dr./ Ibrahim El-Sayed Radwan

Prof. of Chest Diseases Faculty of Medicine Al Azhar University

r. Prof. Dr./ Mokhtar Taha Madkour

Prof. of Chest Diseases Faculty of Medicine Ain Shams University

£. Dr./ Mahmoud Serry El-Bokhary Assistant professor of Medical Sciences

Assistant professor of Medical Sciences Institute of Environment Studies & Reasearch, Ain Shams University

Acknowledgment

I thank Allah who granted me the ability to complete the work of this study.

I would like to express my supreme gratitude to Dr. Mokhtar Madkour, professor of Chest Diseases; Faculty of Medicine, Ain Shams University, for his continuous guidance, his close supervision, and valuable instructions through this study.

It's a pleasure to express my gratitude and great appreciation to Dr. Mahmoud Serry, Assistant professor of Medical Sciences, institute of Environmental studies and research, Ain Shams University for the time and effort he devoted to the supervising of the present work, his valuable instructions and encouragement throughout this study.

I would like also to express my deep thanks to Dr. Hala Ibrahim, Lecturer of Medical Sciences, Institute of Environmental Studies and Research Ain Shams University for her continuous guidance all throughout this study.

I should like also to extend my deep thanks and supreme gratitude to Dr. Abd El Hameed Awad, Professor of Air Pollution Department, National Research Center for his cooperation, valuable help and his fruitful support in this study.

Lastly, I am deeply thankful to all the staff of the Abbassia Chest Hospital, for their cooperation and encouragement.

Abstract

The present study aimed to evaluate the prevalence of malignant pleural mesothelioma (MPM) in Shubra El-Kheima city due to occupational and environmental "non-occupational" exposure to asbestos and to estimate the exposure-response relationship between environmental exposure to asbestos and MPM.

The study included ۲۹۱۳ evironmentally exposed subjects to asbestos living in the neighbourhood areas of the asbestos plant in Shubra El-Kheima city, ٤٨٧ occupationally exposed subjects working inside the asbestos plant and ٩٧٩ non-exposed subjects living at Banha city as a control group.

All subjects were interviewed. Mass miniature radiographic (MMR) findings for all studied groups were reviewed. Standard chest radiographs and high resolution computerized tomography (HRCT) for persons with abnormal MMR were done.

Details of age, sex, duration of residence in Shubra El-Kheima city and hospital records for all patients including pathologic diagnosis were recorded.

The airborne asbestos fiber concentrations were determined in the industrial, residential and control areas. Pleuropulmonary disorders including mesothelioma were more prevalent among exposed groups than control group.

Eighty-eight cases of MPM were diagnosed, of cases (71.5%) were females and recases (rh.7%) were males. The risk of mesothelioma was recompared to control group.

The mean concentration of airborne asbestos fiber was $\cdot . \circ 9 \ (\pm \cdot . \lor 7)$ inside the asbestos plant, $\cdot . \lor 7 \ (\pm \cdot . \lor 7)$ in the neighbourhood areas surrounding the plant and $\cdot . \cdot . \lor 7$ $(\pm \cdot . \cdot \lor 7)$ in the control area.

This study revealed the extent of pleuropulmonary disorders including MPM in Shubra El-Kheima city and showed that the risk of these disorders increased significantly with duration and intensity of exposure to asbestos.

At these levels of asbestos exposure, there was a significantly increased risk of these disorders which was dose dependent. The study recommended the adoption of periodic medical check ups for population at risk living in Shubra El-Kheima city and increasing awareness of the public regarding the risk of asbestos exposure. Moreover, continuous monitoring of airborne asbestos fibers in Shubra El-Kheima city should be a routine procedure.

List of Contents

Introduction	1
Aim of work	ξ
Review of Literature	٥
Asbestos:	
- Definition and history of asbestos	0
- Geological occurrence of asbestos	V
- Structure and properties of asbestos	٩
- Types of asbestos	17
- Uses of asbestos	19
- Exposure to asbestos	٢٦
- Standards of asbestos.	٢٤
- Airborne asbestos monitoring	٢٧
- Situation of asbestos in the world	٢٩
- Asbestos related diseases	٣٦
Malignant pleural mesothelioma:	
- Definition of malignant pleural mesothelioma	٤٨
- Epidemiology of malignant pleural mesothelior	na ٤٩
- Aetiology of malignant pleural mesothelioma	09
- Clinical picture of malignant pleural mesothelic	oma٧٠
- Pathology of malignant pleural mesothelioma	٧٣
- Pathogenesis of malignant pleural mesotheliom	a٧٦
- Diagnosis of malignant pleural mesothelioma	۸۱
- Prognosis of malignant pleural mesothelioma	9 4

Results	١٠٧
Discussion	177
Summary and Conclusion	1٣٧
Recommendation	1 ٤ ٤
References	1٤٦
Appedix Arabic Summary	

List of Tables

Table	Subject	Page
١	Taxonomy of naturally occurring mineral fibers	11
۲	Regulated and ambient levels of asbestos exposure	77
٣	Human diseases associated with asbestos exposure	٣9
٤	Demographic and Exposure characteristics of asbestos- Exposed Subjects	1.7
٥	Demographic and exposure characteristics of Mesothelioma cases and Non mesothelioma subjects	1.7
٦	Classification of Pleuropulmonary disorders in all studied groups	1.9
٧	Computed tomography findings in malignant mesothelioma cases (No.=^A^)	11.
٨	Methods of diagnosis of malignant mesotheliomas (No=^A^)	111
٩	Histological cell type of pleural mesotheliomas	111
١.	The mean age of malignant pleural mesothelioma cases	117
11	Age Distribution in AA cases of malignant pleural mesothelioma	117
١٢	Prevalence of Mesothelioma among Environmentally Exposed Group in Different Areas	115
١٣	Risk of mesothelioma among exposed and non exposed groups	110
1 £	Duration of exposure to asbestos in cases of malignant pleural mesothelioma in all studied groups	١١٦
10	Airborne asbestos fiber concentrations in study areas and number of samples	117
١٦	Operation—wise average fiber concentration in processing plant in Greater Cairo	114
17	Airborne asbestos fiber concentration in the surrounding areas outside the asbestos plant and number of MPM cases	171
١٨	Airborne asbestos fiber concentration in the surrounding areas outside the asbestos plant and the distance from the asbestos plant	١٢٤
19	Distribution of various indices of Estimated Exposure for Mesothelioma and non mesothelioma cases	170

List of Figures

Figure	Subject	Page
١	Types of asbestos fibers	١٧
۲	Chrysotile asbestos	١٨
٣	Uses of asbestos	۲۱
٤	Thoracoscopic picture of malignant pleural mesothelioma	91
٥	Map of Shubra El-Kheima city and direction and speed of wind	9 ٧
٦	Malignant mesothelioma according to the duration of exposure to asbestos fibers	117
٧	Asbestos fiber concentrations and number of MPM cases among occupationally exposed group	119
٨	Cumulative exposure to asbestos and number of MPM cases in occupationally exposed group	١٢.
٩	Asbestos fiber concentrations and number of MPM cases in environmentally exposed group	177
١.	Cumulative exposure to asbestos and number of MPM cases in environmentally exposed group	١٢٣

LIST OF ABBREVIATIONS

ACGIH	American Conference of Governmental Industrial Health
BAPE	Benign asbestos pleural effusion
CAPMAS	CENTRAL AGENCY FOR PUBLIC MOBILIZATION
	AND STATISTICS
CC17	Clara-Cell Protein
CT	Computed tomography
EGF	Epidermal growth factor
EPA	Environmental protection agency
GOFI	GENERAL ORGANIZATION FOR
	INDUSTRIALIZATION
HRCT	High resolution computerized scan
IPF	Interstitial pulmonary fibrosis
Km	Kilometer
m	Meter
MM	Malignant mesothelioma
MMR	Mass miniature radiographs
MPM	Malignant pleural mesothelioma
MRI	Magnetic resonance imaging
NIOSH	NATIONAL INSTITUTE OF OCCUPATIONAL
	SAFETY AND HEALTH
OSHA	OCCUPATIONAL SAFETY AND HEALTH AGENCY
PCM	Phase contrast microscopy
PEL	Permissible exposure limit
ROS	Reactive oxygen species
SPA	Surfactant associated protein
STEL	Short term exposure limit
SVC	Superior vena cava
t.p	Thermal precipitator
TSGs	Tumour suppressor genes
TWA	Time weighed average
UK	United Kngdom
US	United States
USA	United States of America

INTRODUCTION

Malignant pleural mesothelioma (MPM) is caused by environmental and occupational exposure to asbestos (*Selcuk et al.*, 1997). During the last four decades, numerous studies on malignant mesothelioma have been conducted (*Hillerdal*, 1999) and Giarelli and Bianchi, 7 · · ·).

However, the natural history of this tumour remains for various aspects ill defined or scarcely known. In particular, topics that deserve further investigation include the proportion of cases attributable to asbestos, the spectrum of the population at risk, the length of the latency periods, the impact of mild exposure to asbestos, and the role of co-factors in the development of the tumour (*Bianchi et al.*, **••**).

Cohort studies found increased incidence and mortality from mesothelioma among asbestos workers employed in insulation (Selikoff et al., 1919), mining (McDonald et al., 1919), textile manufacture (Yano et al., 1919) and asbestos cement factories (UlVestad et al., 1919). Epidemiological studies have shown that occupational exposure to asbestos causes mesothelioma (Dement et al., 1911).

Exposure has been assessed by a variety of methods, but all these studies reached the conclusion that the rate of mesothelioma increases as the level of exposure increases (Hansen et al., 1991).

Nonoccupational or environmental exposure to asbestos is associated with an increased risk of mesothelioma (*Joubert et al.*, 1991). Exposure is experienced by individuals living near factories manufacturing asbestos products (*Hammond et al.*, 1997), asbestos mines and mills (*Reid et al.*, 1997), or living with asbestos workers (*Dodoli et al.*, 1997).

The development of this disease has a long latency, with cases arising more than ' years after first exposure, and continues to rise exponentially with time since first exposure (Deklerk et al., 1914).

Since other factors such as levels of exposure (*Hauptmann* et al., $r \cdot r$) also determine mesothelioma risk, it is important to analyze all these factors to disentangle their separate effects. The prevalence of mesothelioma has been increasing throughout the industrialized world (*Britton*, $r \cdot r$). The incidence is predicted to peak around $r \cdot r \cdot r$.

This reflects industrial exposure to asbestos, which was common up to the $19.4 \cdot s$ combined with a latent period between exposure to asbestos and development of mesothelioma averaging $r \cdot - \epsilon \cdot year$ (*Britton*, $r \cdot \cdot r$).