UTILIZATION OF GAMMA IRRADIATION FOR BIOFUEL PRODUCTION BY MICROORGANISMS

By

MARWA MOHAMAD MOHAMAD MOUSSA

B. Sc. (Agric. Microbiology), Ain Shams University, 2005

A thesis submitted in partial fulfillment of The requirements for the degree of

MASTER OF SCIENCE

in

(Agriculture Microbiology)

Department of Agriculture Microbiology Faculty of Agriculture Ain Shams University

APPROVAL SHEET

UTILIZATION OF GAMMA IRRADIATION FOR BIOFUEL PRODUCTION BY MICROORGANISMS

By

MARWA MOHAMAD MOHAMAD MOUSSA

B. Sc. (Agric. Microbiology), Faculty of Agriculture, Ain Shams University, 2005

This	thesis for M. S	Sc. degree has bee	en approve	d by:		
Pı	•	ez Fouad Ibrahin of Microbiolog		of Agricu		
Dr. S	awsan Fawzy	Mohamad Sheha	ıta	•••••		•••••
Pı	of of Microbio	ology, Faculty of A	Agriculture,	Ain Shams U	Jniver	sity.
Dr. T	arek Said El-	Гауеb		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
	ssociate Prof on iversity.	of Microbiology,	Faculty of	Agriculture,	Ain S	Shams
Dr. A	hmed Abdel-	Wahab Abdel-Ha	ıfez	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
	ssociate Prof on iversity.	of Microbiology,	Faculty of	Agriculture,	Ain S	Shams

Date of Examination: / / 2014

UTILIZATION OF GAMMA IRRADIATION FOR BIOFUEL PRODUCTION BY MICROORGANISMS

By

MARWA MOHAMMAD MOHAMMAD MOUSSA

B. Sc. (Agric. Microbiology), Ain Shams University, 2005

Under the supervision of:

Dr. Ahmed Abdel-Wahab Abdel-Hafez

Associate Prof of Microbiology, Department of Agriculture Microbiology, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Tarek Said El-Tayeb

Associate Prof of Microbiology, Department of Agriculture Microbiology, Faculty of Agriculture, Ain Shams University

Prof. Tarek Mahmoud El-Mongy

Prof of Microbiology, Department of Irradiation Microbiology, National Center for Radiation Research and Technology, Atomic Energy Authority.

ACKNOWLEDGEMENT

All Praise and thanks to **ALLAH Rab El-Allamin**, the most merciful for directing me to the right way and provides me all I have.

I would like to express my deepest and sincere and appreciate gratitude to **Dr. Ahmed Abdel-Wahab Abdel-Hafez** Associate Prof of Microbiology, Fac. Agric., Ain Shams Univ. for his kind supervision, guidance, valuable help, offering all possible facilities, continuous support and encouragement, precious advices, and useful discussion during the study and the preparation of this manuscript.

I would like to extend my deepest thanks and sincere gratitude to **Dr. Tarek Said El-Tayeb** Associate Prof of Microbiology, Fac. Agric., Ain Shams Univ. for his supervision, valuable technical advice and unfailing help during the course of investigation and during writing the manuscript. This work benefited greatly from his efforts. I would gratefully acknowledge his valuable support.

I owe my sincere thanks to **Prof. Tarek Mahmoud El-Mongy** Prof of Microbiology, Dept. of Irradiation Microbiology, National Center for Radiation Research and Technology, Atomic Energy Authority for his supervision, valuable help and his encouragement during this study.

I owe my sincere thanks to **Prof. Samir Ahmad Melegy** Prof of Microbiology, Dept. of Irradiation Microbiology, National Center for Radiation Research and Technology, Atomic Energy Authority for his guidance, valuable assistance and encouragement during the study.

I would like to express my deepest gratitude to **Prof. Hussein Abdel-Karim** Head of Dept. of Irradiation Microbiology, National
Center for Radiation Research and Technology, Atomic Energy Authority
for his continued help, support and encouragement to finish this work.

My sincere thanks to everyone helped me and supplied me with the facilities during this work especially the stuff of the Dept. of Microbiology in the Bio-fertilizer Unit, Fac. of Agric., Ain Shams University for providing facilities and kind help.

Special thanks to my family. Words cannot express how grateful I am to my mother, father and sister **Mariam** for their love, support and their continuous encouragement and praying for me throughout my life. I would also like to thank my friends **Marwa** and **Nermin** for supporting me to strive towards my goal.

ABSTRACT

Marwa Mohammad Mohammad Moussa: Utilization of Gamma Irradiation for Biofuel Production by Microorganisms. Unpublished M.Sc. Thesis, Department of Microbiology, Faculty of Agriculture, Ain Shams University, 2014.

With the growing crisis in fossil fuel and environmental pollution problems worldwide, bioethanol has become one of the most promising biofuels and many studies have been focused on improving the efficacy of the bioethanol production process.

Due to the high cost of bioethanol production process, this work was concerned with producing bioethanol from low-cost raw agroindustrial feedstock and utilizing gamma irradiation technology to increase conversion efficiency of these materials to bioethanol. Sugarcane bagasse and potato peels were hydrolyzed by dilute sulphuric acid (2 and 6 % v/v) and the resulted hydrolyzates were fermented by either *Zymomonas mobilis* ATCC 29191, *Saccharomyces cerevisiae* ATCC 7754, or co-culture of both organisms. The effect of gamma irradiation on bioethanol production was studied by exposing the producing microorganisms or feedstock to different doses of γ-rays. Effect of combined treatment of feedstock, using gamma irradiation and dilute acid, on bioethanol production was also investigated.

Gamma irradiation had negative impact on cell counts, but not the viability, of both organisms. The highest bioethanol production, from acid-hydrolyzed sugarcane bagasse, was from treatment with 2 % (v/v) H₂SO₄ at 120°C for 60 min, fermented with *Sacch. cerevisiae* (irradiated at 0.3 kGy), giving 10.3 g L⁻¹. The highest bioethanol production, from acid-hydrolyzed potato peels, was from treatment with 6 % (v/v) H₂SO₄ at 100°C for 30 min, fermented with *Sacch. cerevisiae* (irradiated at 0.3 kGy), giving 7.5 g L⁻¹.

On sugarcane bagasse, hydrolyzed with 2 % (v/v) H_2SO_4 at $120^{\circ}C$ for 60 min, the co-culture of *Z. mobilis* irradiated at 0.1 kGy and *Sacch. cerevisiae* irradiated at 0.3 kGy produced 11.3 g L^{-1} . When the last pretreatment was preceded with irradiation of sugarcane bagasse at 75 kGy, 15.6 g L^{-1} of bioethanol was achieved.

On potato peels, hydrolyzed with 6 % (v/v) H₂SO₄ at 100°C for 30 min, the same co-culture of irradiated *Z. mobilis* at 0.1 kGy and *Sacch. cerevisiae* at 0.3 kGy produced 9.2 g L⁻¹ of bioethanol. When the last pretreatment was preceded with irradiation of the potato peels at 75 kGy, 12.1 g L⁻¹ of bioethanol was achieved.

Key Words: Bioethanol, fermentation, sugarcane bagasse, potato peels, dilute acid hydrolysis, gamma irradiation, co-culture, *Saccharomyces cerevisiae*, *Zymomonas mobilis*.

CONTENTS

	Page
LIST OF TABLES	i
LIST OF FIGURES	ii
LIST OF ABBREVIATIONS	iii
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Bioethanol producing microorganisms	6
2.2. Agro-industrial feedstock	9
2.3. Hydrolysis of agro-industrial feedstock	13
2.4. Effect of gamma irradiation on microorganisms	17
2.5. Irradiation pretreatment of feedstock	18
2.5. Bioethanol production	20
3. MATERIALS AND METHODS	24
3.1. MATERIALS	24
3.1.1. Microorganisms for bioethanol production	24
3.1.2. Agro-industrial feedstock	24
3.1.3. Media used	24
3.2. METHODS	25
3.2.1. Analysis of agro-industrial feedstock	25
3.2.1.1. Determination of moisture percentage	25
3.2.1.2. Determination of total sugars	26
3.2.1.2.1. Sugar extraction	26

	Page
3.2.1.2.2. Total sugars analysis (Phenol-sulfuric acid method)	26
3.2.1.3. Carbon and nitrogen contents of feedstock	26
3.2.2. Irradiation of microorganisms	27
3.2.3. Feedstock processing	28
3.2.3.1. Dilute acid hydrolysis	28
3.2.3.2. Effect of gamma irradiation of	29
3.2.4. Bioethanol fermentation	29
3.2.5. Bioethanol determination	30
3.2.6. Determination of viable cell counts	30
3.2.7. Bioethanol production parameters	31
3.2.7.1. Conversion coefficient	31
3.2.7.2. Bioethanol yield	32
3.2.7.3. Sugar utilizing efficiency	32
3.2.9. Statistical analysis	32
4. RESULTS AND DISCUSSION	33
4.1. Analysis of agro-industrial feedstock	33
4.2. Gamma radiation sensitivity of <i>Saccharomyces cerevisiae</i> ATCC 7754 and <i>Zymomonas mobilis</i> ATCC 29191	33
4.3. Effect of gamma irradiation on bioethanol production	36
4.3.1. Effect of gamma irradiation of bioethanol producing organisms on bioethanol production from non-hydrolyzed feedstock	36

		Page
	4.3.2. Effect of gamma irradiation of bioethanol producing organisms on bioethanol production from acid-hydrolyzed feedstock	39
	4.3.2.1. Acid-hydrolyzed sugarcane bagasse	39
	4.3.2.2. Acid-hydrolyzed potato peels	49
	4.4. Effect of the co-culture of irradiated <i>Z. mobilis</i> and <i>Sacch. cerevisiae</i> on bioethanol production on non-hydrolyzed and hydrolyzed feedstock	59
	4.5. Effect of gamma irradiation of non-hydrolyzed feedstock on bioethanol production by single and co-culture cultivation of irradiated <i>Z. mobilis</i> and <i>Sacch. cerevisiae</i>	62
	4.6. Effect of combining acid hydrolysis with gamma irradiation of feedstock on bioethanol production by single or co-culture cultivation of irradiated <i>Z. mobilis</i> and <i>Sacch. cerevisiae</i>	65
5.	SUMMARY	73
6.	REFERENCES	77
	ARABIC SUMMARY	

LIST OF TABLES

		Page
1.	Analysis of sugarcane bagasse and potato peels.	33
2.	Effect of exposing <i>Z. mobilis</i> and <i>Sacch. cerevisiae</i> cells to different doses of gamma irradiation (kGy) on bioethanol production using non-hydrolyzed sugarcane bagasse and potato peels.	38
3.	Effect of exposing Z. mobilis and Sacch. cerevisiae cells to different doses of gamma irradiation (kGy) on bioethanol production using sugarcane bagasse hydrolyzed by 2% (v/v) H_2SO_4 at $100^{\circ}C$ for 30 and 60 min.	40
4.	Effect of exposing <i>Z. mobilis</i> and <i>Sacch. cerevisiae</i> cells to different doses of gamma irradiation (kGy) on bioethanol production using sugarcane bagasse hydrolyzed by 2% (v/v) H ₂ SO ₄ at 120°C for 30 and 60 min.	43
5.	Effect of exposing <i>Z. mobilis</i> and <i>Sacch. cerevisiae</i> cells to different doses of gamma irradiation (kGy) on bioethanol production using sugarcane bagasse hydrolyzed by 6 % (v/v) H ₂ SO ₄ at 100°C for 30 and 60 min.	46

		Page
6.	Effect of exposing Z. mobilis and Sacch. cerevisiae cells to different doses of gamma irradiation (kGy) on bioethanol production using sugarcane bagasse hydrolyzed by 6% (v/v) H_2SO_4 at $120^{\circ}C$ for 30 and 60 min.	48
7.	Effect of exposing <i>Z. mobilis</i> and <i>Sacch. cerevisiae</i> cells to different doses of gamma irradiation (kGy) on bioethanol production using potato peels hydrolyzed by 2% (v/v) H ₂ SO ₄ at 100°C for 30 and 60 min.	48
8.	Effect of exposing <i>Z. mobilis</i> and <i>Sacch. cerevisiae</i> cells to different doses of gamma irradiation (kGy) on bioethanol production using potato peels hydrolyzed by 2% (v/v) H_2SO_4 at $120^{\circ}C$ for 30 and 60 min.	50
9.	Effect of exposing <i>Z. mobilis</i> and <i>Sacch. cerevisiae</i> cells to different doses of gamma irradiation (kGy) on bioethanol production using potato peels hydrolyzed by 6% (v/v) H_2SO_4 at 100° C for 30 and 60 min.	54
10.	Effect of exposing <i>Z. mobilis</i> and <i>Sacch. cerevisiae</i> cells to different doses of gamma irradiation (kGy) on bioethanol production using potato peels hydrolyzed by 6% (v/v) H_2SO_4 at $120^{\circ}C$ for 30 and 60 min.	56
11.	Effect of acid hydrolysis of sugarcane bagasse on bioethanol production by co-culture (1:1) of irradiated <i>Z. mobilis</i> at 0.1 kGy and <i>Sacch. cerevisiae</i> at 0.3 kGy.	60

		Page
11.	Effect of acid hydrolysis of sugarcane bagasse on bioethanol production by co-culture (1:1) of irradiated <i>Z. mobilis</i> at 0.1 kGy and <i>Sacch. cerevisiae</i> at 0.3 kGy.	61
12.	Effect of exposing sugarcane bagasse to different gamma irradiation doses on bioethanol production by irradiated <i>Z. mobilis</i> at 0.1 kGy, <i>Sacch. cerevisiae</i> at 0.3 kGy and co-culture of both microorganisms (1:1).	63
13.	Effect of exposing potato peels to different gamma irradiation doses on bioethanol production by irradiated <i>Z. mobilis</i> at 0.1 kGy, <i>Sacch. cerevisiae</i> at 0.3 kGy and co-culture of both microorganisms (1:1).	64
14.	Effect of combination treatment of sugarcane bagasse by exposing to different gamma irradiation doses and hydrolysis by 2 % (v/v) H ₂ SO ₄ at 120°C for 30 and 60 min on bioethanol production by irradiated <i>Z. mobilis</i> at 0.1 kGy, <i>Sacch. cerevisiae</i> at 0.3 kGy and co-culture of both microorganisms (1:1).	66
15.	Effect of combination treatment of potato peels by exposing to different gamma irradiation doses and hydrolysis by 6% (v/v) H ₂ SO ₄ at 100°C for 30 and 60 min on bioethanol production by irradiated <i>Z. mobilis</i> at 0.1 kGy, <i>Sacch. cerevisiae</i> at 0.3 kGy and co-culture of both microorganisms (1:1).	68

LIST OF FIGURES

		Page
1.	Effect of different doses of gamma irradiation (kGy) on cell count (Log N) of <i>Zymomonas mobilis</i> ATCC 29191.	34
2.	Effect of different doses of gamma irradiation (kGy) on cell count (Log N) of <i>Saccharomyces cerevisiae</i> ATCC 7754.	35
3.	Effect of different dilute acid treatments on the total sugars concentration (g L ⁻¹) of sugarcane hydrolysis bagasse and potato peels.	58
4.	Effect of combination treatments of sugarcane bagasse on total sugars concentration (g L ⁻¹).	67
5.	Effect of combination treatments of potato peels on total sugars concentration (g L ⁻¹).	70

VIII

LIST OF ABBREVIATIONS

DE Dextrose equivalent

d.w. Dry weight

ED Entner-Doudoroff pathway

EMP Embden-Meyerhof-Parnas pathway

HMF 5-Hydroxyl-methyl-furfural

kGy Kilogray

NO_x Nitrogen OxidesPPW Potato peel waste

RFA Renewable Fuels Association

rpm Round per minute t/ha Ton per hectare UV Ultraviolet rays

γ-rays Gamma rays