

PALYNOLOGICAL STUDY ON THE SUBSURFACE CRETACEOUS IN THE WESTERN DESERT, EGYPT

A Thesis

Submitted to the Faculty of Science Ain Shams University

For the Degree of Doctor of Philosophy

In

Botany-Palynology

By

Zainab Mohamed El-Noamani Hasaanain

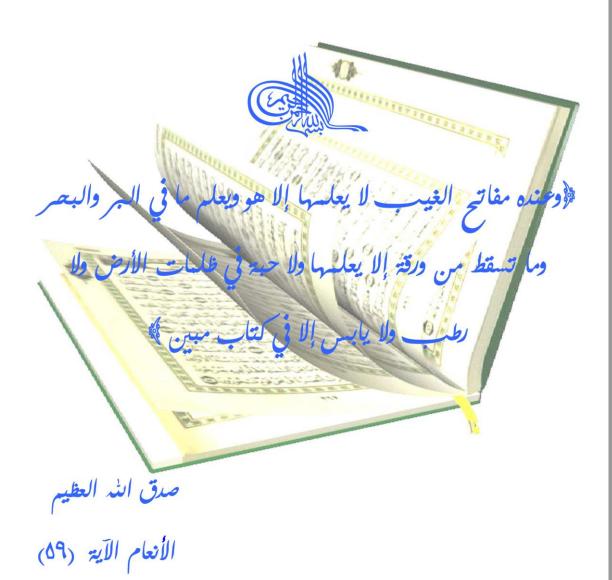
M.Sc. in Botany-Palaeobotany (2011)

Supervised by

Dr. Wagieh El-Sayed El-Saadawi

Prof. of Botany and ex-head of Botany Department–Faculty of Science Ain Shams University

Dr. Sameh Samir Ibrahim Tahoun


Lecturer in Geology Department Faculty of Science Cairo University

Dr. Mohamed Ismail Ibrahim

Prof. of Palynology and Environmental Micropaleontology–Department of Environmental Sciences and Dean of Faculty of Science Alexandria University

Dr. Mohamed Kamal Zobaa

Lecturer in Geology Department Faculty of Science Benha University

Title: Palynological study on the subsurface Cretaceous in the Western Desert, Egypt **Degree:** Doctor of Philosophy **Supervisors:** Dr. Wagieh El-Sayed El-Saadawi..... Prof. of Botany and ex-head of Botany Department Faculty of Science-Ain Shams University Dr. Mohamed Ismail Ibrahim Prof. of Palynology and Environmental Micropaleontology-Dean of Faculty of Science Alexandria University Dr. Sameh Samir Ibrahim Tahoun Lecturer in Geology Department Faculty of Science-Cairo University Dr. Mohamed Kamal Zobaa Lecturer in Geology Department Faculty of Science-Benha University Prof. Maher Mohamed Shehata

Head of Botany Department

Faculty of Science Ain Shams University

Name: Zainab Mohamed El-Noamani Hasaanain

Approval Sheet

Name: Zainab Mohamed El-Noamani Hasaanain **Title:** Palynological study on the subsurface Cretaceous in the Western Desert, Egypt Degree: Doctor of Philosophy **Supervisors:** Dr. Wagieh El-Sayed El-Saadawi..... Prof. of Botany and ex-head of Botany Department-Faculty of Science-Ain Shams University Dr. Mohamed Ismail Ibrahim Prof. of Palynology and Environmental Micropaleontology-Dean Faculty of Science-Alexandria University Dr. Sameh Samir Ibrahim Tahoun Lecturer in Geology Department-Faculty of Science-Cairo University Dr. Mohamed Kamal Zobaa Lecturer in Geology Department-Faculty of Science-Benha University **Arbitrators:** Dr. Nabil Mohamed Aboul-Ela..... Prof. of Palynology-Faculty of Science-Cairo University Dr. Magdy Salah Mahmoud..... Prof. of Palynology–Faculty of Science–Assuit University Dr. Wagieh El-Sayed El-Saadawi..... Prof. of Botany and ex-head of Botany Department-Faculty of Science-Ain Shams University Dr. Mohamed Ismail Ibrahim Prof. of Palynology and Environmental Micropaleontology-Dean of Faculty of-Science-Alexandria University Prof. Maher Mohamed Shehata Head of Botany Department-Faculty of Science-Ain Shams University

I declare that the work contained in this thesis is the result of my own investigations. It has not been previously submitted for any degree at this or any other University. Zainab Mohamed El-Noamani This thesis is dedicated to... my parents, my siste**r**s, and my sweet heart Omar, Belal & Eyad Without whom it could not be possible.

<u>Acknowledgement</u>

The ultimate praise and gratitude be to "Allah" for granting me the ability to accomplish this work.

This work is a result of considerable amount of sustainable support, advice, assistance, guidance, and encouragement, without which it would not have seen the light of the day. I would like to extend my authentic gratefulness to the following individuals for their help with this work:

In the first place I would like to show my greatest appreciation to **Prof. Wagieh El-Sayed El-Saadawi** I can't say thank you enough for his tremendous support and help. I feel motivated and encouraged every time I attend his meeting. Without his encouragement and guidance this project would not have materialized.

A great deep appreciation goes to **Prof.** Mohamed Ismail Ibrahim, Dean of the faculty of Science, Alexandria University for his supervision, providing the studied samples, giving the opportunity to work in his lab, permanent support, enthusiasm, guidance, and reviewing this work. His door was always open even when he had piles of work. The institutional trust and freedom he gave me created comfortable and fruitful atmosphere for the work. I doubt that I will ever be able to convey my appreciation for giving me the opportunity to work under his supervision.

A special word of gratitude is due to **Or. Sameh Tahoun**, who saved no effort helping me all along. His constant encouragement, fruitful and interesting discussions throughout this work, drafting my StrataBugs charts and critically reading this thesis are gratefully appreciated.

I would passionately like to show my appreciation to **Dr. Mohamed Zobaa** for his supervision, providing most of the publications used in this work, guidance, helpful

insights, and constructive criticism during the preparation and reviewing of this work.

I wish to express my gratitude to the following people who generously contributed relevant literature and discussion in the identification process: Prof. S. El-Beialy (Mansoura University), Prof. M. Mahmoud & Dr. A. Deaf (Assiut University), Dr. M. El-Soughier (Aswan University), Prof. E. Schrank (TU Berlin), Prof. M. Moullade (Aix-Marseille University), Prof. A. Mehdawi (Benghazi University), Prof. A. Tekhali (Tripoli University) and Prof. A. Eisawi (Al-Neelain University).

Thanks and appreciation to **Agiba Oil Company** for providing the samples and well log to Prof. Mohamed Ibrahim, without their help this thesis can not be completed.

Many great thanks go to **Prof. Mohamed El-Bokhary, Prof. Abdel-Mohsen Mohamed** and **Dr. Ashraf Baghdady** (Geology Department, Faculty of Science,

Ain Shams University) for giving me the basic knowledge about lithostratigraphy, biostratigraphy, micropalaeontology and sedimentology.

9 express explicitly my appreciation to a special person, my sincere friend **Samar Nour El-Din** who taught me a lot throughout my journey in the Sea of Science.

I wish to crown my sincere thanks and deepest gratitude to "my family" for their continuous encouragement and support during this work and throughout my life, but no words of thanks can be sufficient.

Finally, gratitude goes to all staff members of the Botany Department, Faculty of Science, Ain Shams University who provided a friendly and inspiring environment for my research.

Contents

Subject	Page
List of Figures	i
List of Tables	iii
Abstract	vi
Preface	v
Chapter 1: Introduction	1
1.1. Background	1
1.2. Purpose and scope	5
1.3. Previous work	5
1.4. Location of the studied well	12
Chapter 2: Materials and Methods	14
2.1. Materials	14
2.2. Methods	14
2.2.1. Disaggregation and weighing	14
2.2.2. Demineralization	15
2.2.3. Final processes	16
Chapter 3: Lithostratigraphy	20
3.1. Bahariya Foramation	20
3.2. Abu Roash Formation	22
3.3. Khoman Formation	24
Chapter 4: Systematic Palynology	27
4.1. Introduction	27
4.2. Spores and pollen	27
4.3. Fungal palynomorphs	104
4.4. Microalgal palynomorphs	105
4.5. Dinoflagellate cysts	110
4.6. Acritarchs	134
4.7. Microforaminiferal inner test linings	138
4.8. Scolecodonts	140
4.9. Varia	141
4.10. A review of the angiosperm pollen genus <i>Cretacaeiporites</i>	4.40
Herngreen	142
4.10.1. Historical introduction	142
4.10.2. Systematic Palynology	143
Chapter 5: Palynostratigraphy	160
Introduction	160

Palynozone 1: Dinogymnium sppOdontochitina porifera Assemblage Zone	
Palynozone 2: Unnamed Zone	
Palynozone 3: Ephedripites ambiguus-Triporoletes blanensis- Trichodinium spp. Assemblage Zone	
Palynozone 4: Afropollis jardinus–Afropollis cf. kahramanensis– Dichastopollenites ghazalatensis Assemblage Zone	
Palynozone 5: Elaterosporites verrucatus–Sofrepites legouxae– Cretacaeiporites spp. Assemblage Zone	
Chapter 6: Palynofacies and Source Rock Evaluation	
6.1. Introduction	
6.2. Palynofacies constituents	
6.3. Palynofacies and kerogen type classification	
6.4. Palynofacies zones and kerogen types of Lotus#3 borehole	
Chapter 7: Depositional Environment and Palaeoclimate	
7.1. Depositional environment	
7.1.1. Introduction	
7.1.2. Palynofacies and the depositional environment 7.1.3. Palynomorphs and the depositional environment 7.1.4. Depositional environment interpretations of Lotus#3	
borehole	
7.2. Palynoflora and palaeoclimatic implications	
Chapter 8: Summary and Conclusions	
References	
Appendices	
Appendix 1	
Appendix 2	
Appendix 3	
Plates	
المستخلص	
الملخص العربي	

<u>List of Figures</u>

No.	Caption	Page
1	Generalized lithostratigraphic column in the northern part of the Western Desert (after Schlumberger, 1995)	4
2	Location map of the Lotus#3 (Lot#3) well	13
3	Stratigraphic succession and position of the samples encountered in Lotus#3 borehole	26
4	Basic morphologic groups of acritarchs encountered in the present study	135
5	Stancliffe's informal classification of the microforaminiferal linings	139
6	Line illustration of Cretacaeiporites species	153
7	Stratigraphic range of Cretacaeiporites species	154
8	World palaeogeographic map showing the distribution of the <i>Cretacaeiporites</i> species durin the Cretaceous period	155
9a	Stratigraphic ranges of the recorded microspores in Lotus#3 (Lot#3) well in order of last occurrences	170
9b	Stratigraphic ranges of the recorded microspores and gymnosperm pollen in Lotus#3 (Lot#3) well in order of last occurrences	171
9c	Stratigraphic ranges of the recorded gymnosperm pollen in Lotus#3 (Lot#3) well in order of last occurrences	172
9d	Stratigraphic ranges of the recorded angiosperm pollen in Lotus#3 (Lot#3) well in order of last occurrences	173
9e	Stratigraphic ranges of the recorded dinoflagellates and other organic-walled microfossils in Lotus#3 (Lot#3) well in order of last occurrences	174
9 f	Stratigraphic ranges of the recorded dinoflagellates and other organic-walled microfossils in Lotus#3 (Lot#3) well in order of last occurrences	175
10	Ternary AOM-phytoclast-palynomorph (APP) kerogen plot (after Tyson, 1993)	186
11	Chart of semi-quantitative palynofacies analysis of the studied samples of Lotus#3 borehole	188

12	Palynofacies zone 1 (PF-1); dominated by AOM and phytoclasts while the palynomorphs represented by low proportion, sample no. 3 (1966 m)	190
13	Palynofacies zone 2 (PF-2); the AOM constitutes the total bulk of POM, sample no. 30 (1686 m)	191
14	Palynofacies zone 3 (PF-3); a sharp decrease in AOM and a slightly increase in phytoclasts quantity, sample no. 45 (1524 m)	192
15	Ternary AOM-Phytoclast-Palynomorph (APP) Kerogen plots of the studied samples of Lotus#3 borehole; illustrating the three recognized palynofacies types	193
16	A summary of the principal sedimentary environments	194
17	Microplankton-spore-pollen palynomorph plot of Federova (1977) and Duringer and Doubinger (1985) (after Tyson, 1995)	195
18	Microplankton-spore-pollen ternary plot of the studied interval of Lotus#3 borehole	198
19	Chart of semi-quantitative analysis of selected and frequent-dominant palynomorphs in the studied interval of Lotus#3 borehole	201

List of Tables

No.	Caption	Page
1	Northern Western Desert formations encountered in the Lotus#3 well	13
2	Previous records of <i>Cretacaeiporites</i> species compiled from Palynodata and White (2008) unless otherwise noticed (*)	156
3	Correlation of the most important Late Cretaceous palynological biozonation in North Western Desert of Egypt, including the present study	176
4	Detailed classification system of the individual palynological components from palynomorph group (simplified after Tyson, 1993, 1995; Mendonça Filho <i>et al.</i> , 2012)	181
5	Detailed classification system of the individual palynological components from AOM group (simplified after Tyson, 1993, 1995; Mendonça Filho <i>et al.</i> , 2012)	182
6	Detailed classification system of the individual palynological components from phytoclast group (simplified after Tyson, 1993, 1995; Mendonça Filho <i>et al.</i> , 2012)	184
7	Key to palynofacies fields indicated in the ternary kerogen plot (after Tyson, 1995)	187
8	Botanical affinities, and the ecological types of miospore taxa recorded in the present study. Ecological types after Schrank (2001), Wang <i>et al.</i> (2005), Eiserhardt <i>et al.</i> (2011) and Bowman <i>et al.</i> (2014).	202

Abstract

Abstract

Fifty five cutting samples from the Cretaceous Bahariya and Abu Roash formations of the Lotus#3 borehole in the North Western Desert of Egypt, have been palynologically investigated. The study vielded copious amounts of mostly well-preserved palynomorphs (193 species), out of which 57 spores, 38 gymnosperm pollen, 39 angiosperm pollen, one fungal palynomorph, one fresh water algae, one prasinophyte, 46 cyanobacterium, five dinoflagellate cysts and five acritarchs, in addition to various morphological forms of scolecodonts and microforaminiferal inner test linings. Of these, One new angiosperm pollen belonging to the genus Cretacaeiporites is described and a new combination C. krutzschi (Boltenhagen) comb. nov. is also proposed. In addition, one genus (Rivularia) and five species (Ariadnaesporites cristatus, Crassosphaera ornata, Fromea amphora, Odontochitina tabulata and Ovoidites gracilis) are recorded for the first time from the Cretaceous of Egypt.

Five informal assemblage palynozones are proposed: *Dinogymnium* spp.–*Odontochitina porifera* (Coniacian–Santonian); Unnamed Zone (late Turonian–early Coniacian); *Ephedripites ambiguus–Triporoletes blanensis–Trichodinium* spp. (late Cenomanian–Turonian); *Afropollis jardinus–Afropollis cf. kahramanensis–Dichastopollenites ghazalatensis* (early–late Cenomanian); *Elaterosporites verrucatus–Sofrepites legouxae–Cretacaeiporites* spp. (late Albian–early Cenomanian). These palynozones were correlated with their equivalents from the North Western Desert of Egypt.

Three palynofacies zones which are environmentally controlled are identified and the source rock potential is evaluated. Kerogen type II, oil-prone material is suggested to the Bahariya and basal part of Abu Roash "G", "D", "C", "B", "A" members while kerogen type I-II, highly oil prone is postulated for the upper part of Abu Roash "G", "F" and "E" members.

The information gained from the climatic tolerances of modern plants with affinities to the encountered sporomorphs, suggest that