STUDIES ON ANTIMICROBIAL EFFECT OF MARJORAM PLANT IN FOOD PRESERVATION

BY

AMIRA MOHAMED SHOKRY RIAD

B.Sc. Agric. Sc. (Food Technology), Cairo University, 1999

Under the supervision of:

Prof. Dr. Ahmed Yossef Gibrel

Professor of Food Science and Technology, Dep. of Food Science, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Amal Ahmed Mohamed

Associate Prof. of Food Science and Technology, Dep. of Food Science, Faculty of Agric., Ain Shams University

Prof. Dr. Fathy Abd Elrazik Ali

Professor of Food Science and Technology, Agri Industrialization Unit, Desert Research Center, Cairo, Egypt.

STUDIES ON ANTIMICROBIAL EFFECT OF MARJORAM PLANT IN FOOD PRESERVATION

BY

AMIRA MOHAMED SHOKRY RIAD

B.Sc. Agric. Sc. (Food Technology), Cairo University, 1999

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

2005

Approval Sheet STUDIES ON ANTIMICROBIAL EFFECT OF MARJORAM PLANT IN FOOD PRESERVATION

BY

AMIRA MOHAMED SHOKRY RIAD

B.Sc. Agric. Sc. (Food Technology), Cairo University, 1999

This thesis for M.Sc. degree has been approved by:

Prof. Dr. Salah Kamel El-Samahy
Prof. of Food Science& Technology, Faculty of Agric., Suez Canal Univ., Ismalia.
Prof. Dr. Yehia Abdel Razik Heikal
Prof. of Food Science & Technology, Faculty of Agric., Ain Shams Univ.
Dr. Amal Ahmed Mohamed
Associate Prof. of Food Science & Technology, Faculty of Agric., Ain Shams Univ.
Prof. Dr. Ahmed Youssef Gibrel
Prof. of Food Science & Technology, Faculty of Agric., Ain
Shams Univ.

Date of examination: 06/07/2005

ACKNOWLEDGMENT

The author wishes to express her gratitude to **Prof.Dr. A.Y. Gibrel** Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University, for suggesting the problem, continuous supervision, guidance and help through the investigation course and during the preparation of the manuscript.

I would like to express my deepest gratitude to **Prof. Dr. Fathi Abdel-Razik Ali,** Prof. of Food Science and Technology, Agri Industrialization unit, Desert Research Center for his supervision and valuable help during the investigation and preparation of the manuscript.

Thanks are also due to **Dr. Amal A. Hassan,** Associate Prof. of Food Science & Technology, Faculty of Agriculture, Ain Shams University for her valuable help, kind advice, her help during the laboratory work and her effort to finish up this work.

My deepest thanks to staff members of fermentation laboratory, Department of Food science and Technology for their cooperation and friendly atmosphere.

ABSTRACT

Amira Mohamed Shokry Riad. Studies on antimicrobial effect of marjoram plant in food preservation. Unpublished Master of Science Thesis in Agriculture (Food Science & Technology), Ain Shams University, Faculty of Agriculture, Department of Food Science, 2005.

The uses of chemical synthetic agents may be considered less desirable by a segment of the consuming public than are natural antimicrobial compounds. Thus, interests in using of natural antimicrobial compounds in foods have increased because of the growing demand in so called natural food.

From such point of view this study was undertaken to evaluate the chemical composition and antimicrobial activities of *Origanum majorana L*. (marjoram essential oil). The effect of storage conditions on physico-chemical properties of marjoram essential oil was investigated. The effect of addition marjoram essential oil concentrations on improving sensory properties of pickled cucumber was also studied. The obtained data showed that:

Marjoram essential oil was found to be rich in linalool (20.98%), limonene (16.78%), β -pinene (12.49%), P-cymene (10.88%), α -pinene (9.69%) and 1,8 cineol (6.84%). Also, It contained smaller quantities of terpinene-4-ol (1.92%), linally acetate (1.82%), α -terpinene (1.03%) and eugenol (0.99 %) . The identified compounds are representing 83.42% of the total essential oil.

Marjoram essential oil totally inhibited *Aspergillus niger*, *Aspergillus flavus*, *Fusarium moniliform*, *Penicillium expansum* at 300-400 ml /100 ml, while 100 and 120 ml / disc was required for *Pichia anomala* and *Rhodotorula minuta*, respectively and 100 and 160 ml / disc for *Bacillus cereus* and *Escherichia coli*, respectively.

It was found that the oil samples, which were stored in brown glass bottles at refrigerator temperature were well preserved where the values of specific gravity, refractive index, optical rotation, acid number and ester number were 0.8980, 1.458, 21°3`, 0.40 and 13.5, respectively.

A sensory testing of pickled cucumber proved that addition of marjoram essential oil concentrations (100-160 $\mu l/$ 100ml) gave higher scores for taste, texture, appearance, flavor and color than that of lower concentrations (60 and 80 $\mu l/$ 100ml). On the contrary, the control sample (without addition of marjoram essential oil) had the lowest scores for most sensory properties.

Key words: Marjoram essential oil, Antimicrobial activity, Physical and chemical properties, Cucumber pickling.

CONTENT

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. <i>Marjoram</i> (history, uses and medicinal action)	3
2.2. Chemical composition of marjoram oil	4
2.3. Antimicrobial activity of marjoram oil	10
2.4. Storage of marjoram essential oil	19
2.5. Use of marjoram essential oil in food processing	20
3. MATERIAL AND METHODS	26
Material	26
3.1. Plant material	26
3.2. Chemical composition of marjoram essential oil	26
3.2.1. Extraction of marjoram essential oil	26
3.2.2. Separation and identifications of marjoram	
essential oil components by GC	26
3.3. Antimicrobial activity of marjoram essential oil	27
3.31. Microorganisms	27
3.3.2. Media	27
3.3.3. Antifungal activity	28
3.3.4. Antibacterial and anti yeast activity	29
3.4. Effect of storage condition on marjoram essential oil	30
3.4.1. Type of containers	30
3.4.2. Storage temperature	30
3.4.3. Determination of the physico-chemical properties.	30
3.5. Effect of marjoram essential oil on cucumber pickle	31
3.5.1. Brining and fermentation procedures	31
3.6. Statistical Analysis	32
4. RESULTS AND DISCUSSION	33
4.1. Marjoram oil composition	33
4.2. Antimicrobial activity of marjoram essential oil	36
4.2.1. Antibacterial activity	36

	Page
4.2.2. Antifungal activity of marjoram essential oil	39
4.3. Effect of the storage conditions on the physical and	
chemical characteristics of sweet marjoram essential	
oil during storage	46
4.3.1. Effect of the temperature on the physical and	
chemical properties of marjoram oil during the	
storage for 8 months	49
4.3.1.1. Specific gravity:	49
4.3.1.2. Refractive index	51
4.3.1.3. Optical rotation	54
4.3.1.4. Ester number	56
4.3.1.5. Acid number	58
4.4. Utilizations of marjoram oil in cucumber pickling	58
4.4.1. Effect of marjoram oil concentrations on	
titratatble acidity and pH values	58
4.4.1.1. Titratatble acidity of cucumber pickles	58
4.4.1.2. pH values of cucumber pickles	63
4.4.2. Effect of marjoram oil on microflora of pickled	66
cucumber	
4.4.2.1. Lactic acid bacteria count	67
4.4.2.2. Yeasts and molds counts	67
4.4.3. Organoleptic evaluation of pickled cucumber	72
5. SUMMARY	78
5. REFERENCES	83
ARABIC SUMMARY	

LIST OF TABLES

Гable		Page
No.		
1	Percentage composition of the marjoram essential oil compounds	35
2	Zones of growth inhibition (mm) showing by the antibacterial activity of marjoram essential oil at different concentrations	37
3	Percentage of inhibition of growth of the mycelium by marjoram essential oil at different concentrations in the culture medium (μ l/ 100/ml) against fungal	
4	zones of growth inhibition (mm) showing by activity of marjoram essential oil at different concentrations µl/disc	42
	against yeast strain	42
5	Effect of storage period, storage temperature and type of	
	container on specific gravity of marjoram oil	50
6	Effect of storage period, storage temperature and type of container on refractive index of marjoram oil	52
7	Effect of storage period, storage temperature and kind of	
	container on optical rotation of marjoram oil	54
8	Effect of storage period, storage temperature and type of	
	container on ester number of marjoram oil	56
9	Effect of storage period, storage temperature and type of	
	container on acid number of marjoram oil	59
10	Changes in titratable acidity (%) during storage of pickled	
	cucumber samples containing different concentrations	
	(m/100 ml) of marjoram essential oil	61
11	Changes in pH values during storage of pickled cucumber	
	samples containing different concentrations (m1/100 ml) of	
	marjoram essential oil	64

Table No.		Page
12	Effect of marjoram essential oil concentrations on	
	lactic acid bacterial counts (cfu/ml brine) of	
	pickled cucumber during storage at room	
	temperature	68
13	Effect of marjoram essential oil concentrations on	
	yeast and mold counts (cfu/ ml brine) of pickled	
	cucumber during storage at room temperature	70
14	Effect of marjoram essential oil concentrations	
	(m/100 ml) on taste of pickled cucumber during	
	storage at room temperature	73
15	Effect of marjoram essential oil concentrations	
	(m/100 ml) on texture of pickled cucumber	
	during storage at room temperature	74
16	Effect of marjoram essential oil concentrations	
	(m/100 ml) on appearance of pickled cucumber	
	during storage at room temperature	75
17	Effect of marjoram essential oil concentrations	
	(m/100 ml) on flavor of pickled cucumber during	
	storage at room temperature	76
18	Effect of marjoram essential oil concentrations	
	(m/100 ml) on color of pickled cucumber during	
	storage at room temperature	77

LIST OF FIGURES

Fig. No.		Page
Fig. 1	Chemical composition of marjoram essential	
	oil by gas chromatography	34
Fig. 2	Effect of marjoram essential oil on the	
	inhibition of Bacillus cereus growth at different	
	concentrations	38
Fig. 3	Effect of marjoram essential oil on the	
	inhibition of Escherichia coli growth at	
	different concentrations.	38
Fig. 4	Effect of different concentrations of marjoram	
	essential oil on growth of bacterial strains (in	
	vitro)	40
Fig. 5	Effect of marjoram essential oil on the	
	inhibition of molds growth at different	
	concentrations, A: Aspergillus niger and B.:	
	Penicillum expansum	43
Fig. 5.	Effect of marjoram essential oil on the	
Cont.	inhibition of molds growth at different	
	concentrations,, C: Fusarium moniliform and	
	D.: Aspergillus flavus	44
Fig. 6	Effect of different concentrations of marjoram	
	essential oil on growth of fungal strains (in	
	vitro)	45
Fig. 7	Effect of marjoram essential oil on the	
	inhibition of yeasts growth at different	
	concentrations, E: Pichia anomala and F:	
	Rhodotorula minuta	47
Fig. 8	Effect of different concentrations of marjoram	
	essential oil on growth of yeast strains (in	
	vitro)	48

Fig. No.		Page
Fig. 9	Effect of storage period and type of container	
	on specific gravity of marjoram essential oil at	
	room temperature	50
Fig. 10	Effect of storage period and type of container	
	on specific gravity of marjoram essential oil at	
	refrigerator temperature	51
Fig. 11	Effect of storage period and type of container	
	on refractive index of marjoram essential oil at	
	room temperature	53
Fig. 12	Effect of storage period and type of container	
	on refractive index of marjoram essential oil at	
	refrigerator temperature	53
Fig. 13	Effect of storage period and type of container	
	on optical rotation of marjoram essential oil at	
	room temperature	55
Fig. 14	Effect of storage period and type of container	
	on optical rotation of marjoram essential oil at	
	refrigerator temperature	55
Fig. 15	Effect of storage period and type of container	
	on ester number of marjoram essential oil at	
	room temperature	57
Fig. 16	Effect of storage period and type of container	
	on ester number of marjoram essential oil at	
	refrigerator temperature	57
Fig. 17	Effect of storage period and type of container	
	on acid number of marjoram essential oil at	
	room temperature	60
Fig. 18	Effect of storage period and type of container	
	on acid number of marjoram essential oil at	
	refrigerator temperature	60

Fig. No.		Page
Fig. 19	Changes in titratable acidity of pickled	
	cucumber containing different concentrations	
Fig. 20	of marjoram essential oil	62
	marjoram essential oil	65

1. INTRODUCTION

Recently, there has been an increasing interest in the finding of new natural antimicrobial compounds due to negative consumer perceptions of artificial preservatives.

The leafy part of plants belong to the *lamiaceae* family, has been added to meat, fish and food products for years. In addition to improving the flavor, certain spices and essential oils prolong the storage life of foods by an antimicrobial activity. Being natural foodstuffs, they appeal to consumers who tend to question the safety of synthetic additives (**Farag** *et al* **1989**).

Essential oil extracts of various plants have been reported to have inhibitory effects against diverse types of microorganisms including gram-positive bacteria, gram-negative bacteria, fungi and viruses (Morris *et al* 1979).

The safe use of herbs and spices and their essential oils has led to their current status of Generally Recognized as Safe (GRAS) Food ingredients (Beuchat, 1994).

Marjoram (*Origanum majorana* L.) is a widely known, old spice. It was cultivated as the secret plant of Osiris in ancient Egypt. It was the symbol of happiness in the Greek and Roman empires.

Marjoram is hardly perennial and herbaceous plant which grows wild in its natural areas: Egypt and eastern Mediterranean countries. It belongs to mint family (*lamiaceae*). It has dark green oval leaves and small grayish white flowers in cluster (**Furia and Bellance, 1971**).

Commercial *Origanum majorana* L. is used as a spice and condiment. The volatile aromatic compounds are employed in the food industry as a spice in sausages. It is also in baked goods, processed vegetables, condiments soups, snake foods and gravies. Also, Egyptian marjoram oil used in perfumery for its herbaceous notes, pharmacology medical (as one of the best antispasmodics, antiviral, analgesic, antiseptics, marjoram tea helps case of bad colds, has tranquilizing

effect on nerves, and helps settle upset stomachs) and clinical microbiology, phytopathology and food preservation (Reineccius, 1994 and Circella *et al* 1995).

The aim of this study was as follows:

- 1- Determination of the chemical composition of marjoram oil.
- 2- Study the antimicrobial activity of marjoram oil.
- 3- Study the best conditions for storage marjoram oil.
- 4- Utilization of marjoram essential oil in real food system (cucumber pickling).