بیے روائی ارار کی ارار ہے " "وقال رب زدنی علما"

4"114"

ROLE OF INFLAMMATORY MARKERS OF INNATE IMMUNITY IN PREGNANT FEMALE WITH OR WITHOUT DIABETES MELLITUS

Thesis

Submitted for Partial Fulfillment of the Requirements of Master Degree in

Internal Medicine

By

Khalifa Abou El-Soud Hussein M.B.B.Ch., Ain Shams University, 2003

SUPERVISED BY

Prof. Dr. Ashraf Okba

Professor of Internal Medicine Faculty of Medicine Ain Shams University

Dr. Fawzia Hassan Abo Aly

Professor of Internal Medicine Faculty of Medicine Ain Shams University

Dr. Zeinab Ahmad Ashoor

Assistant Professor of Internal Medicine Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2011

الوسائط الألتهابية المفرزة ودورها في السيدات الحوامل في وجود مرض السكر أو عدمه

سالت

مقدمة لكلية الطب – جامعة عين شمس توطئة للحصول على درجة

الماجستير في الأمراض الباطنة

مقلامتهمن

خليفة أبو السبعود حسين

بكالوريوس الطب و الجراحة - كلية الطب - جامعة عين شمس (٢٠٠٣)

المشرفون

أد أشرف عقبة

استاذ الأمراض الباطنة كلية الطب – جامعة عين شمس

أد فوزية حسن أبو على

استاذ الأمراض الباطنة كلية الطب – جامعة عين شمس

د زينب أحمد عاشور

أستاذ مساعد الأمراض الباطنة كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١١

ACKNOWLEDGEMENT

Thanks to ALLAH

for giving me the strength and means to do this work

I would like to express my deep gratitude to **Prof. Dr. Ashraf Okba**, Professor of Internal Medicine, Faculty of Medicine Ain Shams University for his great encouragement, constant support. Without his continuous help this work would never have been accomplished.

Special thanks to **Dr. Fawzia Hassan Abo Aly**, Professor of Internal Medicine, Faculty of Medicine, Ain Shams University for her help, guidance, and continuous encouragement in this study.

Many thanks to **Dr. Zeinab Ahmad Ashoor**, Assistant Professor of Internal Medicine, Faculty of Medicine, Ain Shams University for her vast help and guidance, endless cooperation and true concern to accomplish this work in the best possible image.

I would like to thank the **patients** included in this study for their kind acceptance and perfect compliance to our demand.

CONTENTS

Chapter	Page
1. Introduction	1
2. Aim of the work	3
3. Review of Literature	4
4. Patients and Methods	101
5. Results	108
6. Discussion	138
7. Conclusion and Recommendations	155
8. Summary	157
9. References	160
Arabic summary	

LIST OF FIGURES

Number	Title	Page
Fig. (A)	The components of the innate immune system.	5
Fig. (B)	Several factors such as altered nutrition, inactivity, age, fetal metabolic programming, and genetic propensity are known activators of the innate immune system	61
Fig (C)	Effect of insulin on glucose uptake and metabolism	83
Fig.(1)	Comparison between the different studied groups regarding age	109
Fig. (2)	Comparison between the different studied groups regarding gravidity and parity	111
Fig. (3)	Comparison between the different studied groups regarding BMI	113
Fig. (4)	Comparison between the different studied groups regarding fasting blood glucose	115
Fig. (5)	Comparison between the different studied groups regarding WBCs	117
Fig.(6)	Comparison between the different studied groups regarding CRP	119
Fig.(7)	Comparison between the different studied groups regarding C3	121

Fig. (8)	Comparison between the different studied groups regarding C4	123
Fig. (9)	Comparison between the different studied groups regarding Fasting insulin	125
Fig. (10)	Comparison between the different studied groups regarding Fasting glucagon	127
Fig. (11)	Comparison between the different studied groups regarding Hb	129
Fig.(12)	Comparison between the different studied groups regarding platelets	131

LIST OF TABLES

Number	Title	Page
Table (1)	Comparison between the different studied groups regarding age	108
Table (2)	Comparison between the different studied groups regarding gravidity and parity	110
Table (3)	Comparison between the different studied groups regarding BMI	112
Table (4)	Comparison between the different studied groups regarding fasting blood glucose	114
Table (5)	Comparison between the different studied groups regarding WBCs	116
Table (6)	Comparison between the different studied groups regarding CRP	118
Table (7)	Comparison between the different studied groups regarding C3	120
Table (8)	Comparison between the different studied groups regarding C4	122
Table (9)	Comparison between the different studied groups regarding Fasting insulin	124
Table (10)	Comparison between the different studied groups regarding Fasting glucagon	126

Table (11)	Comparison between the different studied groups regarding Hb	128
Table (12)	Comparison between the different studied groups regarding platelets	130
Table (13)	Correlations between serum C reactive protein and different studied parameters in group A (pregnant females with gestational diabetes mellitus)	132
Table (14)	Correlations between serum C reactive protein and different studied parameters in group B (pregnant females without gestational diabetes mellitus)	133
Table (15)	Correlations between serum C3 and different studied parameters in group A (pregnant females with gestational diabetes mellitus)	134
Table (16)	Correlations between serum C3 and different studied parameters in group B (pregnant females without gestational diabetes mellitus)	135
Table (17)	Correlations between serum C4 and different studied parameters in group A (pregnant females with gestational diabetes mellitus)	136
Table (18)	Correlations between serum C4 and different studied parameters in group B (pregnant females without gestational diabetes mellitus)	137

LIST OF ABBREVIATIONS

APL	Anti phospholipide
APS	Anti phospholipid anti body syndrome
ADS	American diabetes association
AGES	Advanced glycation end products
BMI	Body massindex
CRP	c-reactive protein
Σ	Σxpected results
ΣΧ	Sum of observations
ΣX^2	Sum of squared observations
$(\Sigma X)^2$	Square of the sum of observations
F	$\frac{S1^2}{S1^2}$
FB %	Factor B
GDM	Gestation diabetes mellitus
HPA	Hypothalamic –pituitary- adrenal
ICAM-1	Intera cellular adhesion molecule -1

IDO	Indol amine -2,3- dioxygenase
IFG	Impaired fasting glucose
IGT	Impaired glucose tolerance
LADA	Latent autoimmune diabelus in adulate
LC-NE	Locus – coeruleus – nor epinephrine
LDL	Low density lipoprotien
LPS	Lipopoly saccharide
MODY	Maturity onset diabetes of the yange
μ	Micron
NDDG	National diabetes data group
NF – KB	Nuclear factor - kb
NGT	Normal glucose tolerance
N	Number of observations
N	Number of observations
N 1	Size of sample (1)
N2	Size of sample (2)
0	Observed results
O – E ²	Difference squared
OGTT	Oral glucose Tolrance test
PAI – 1	Plasminogen activator inhibitor - 1
PRRS	Pattern recognition receptors

RSA	Recurrent spontonus abortions
SP ²	Pooled variance
S_1	Standard deviation of sample (1)
S_2	Standard deviation of sample (2)
S1 ²	Variance for group 1
S2 ²	Variance for group 2
S1 ²	Variance of sample (1)
S2 ²	Variance of sample (2)
TCC	Terminal complement complex
TLR	Toll like reception
TNF	Tumor necrosis factor alpha
VCAM-1	Vascular adehesion molecule -1
VLDL	Very low density lipoprotein
X_1	Mean of sample (1)
X_2	Mean of sample (2)
X -	Arithmetic mean

INTRODUCTION

Diabetes mellitus has emerged as a major health challenge of the 21st century. The disease has assumed epidemic proportions globally. WHO projects that; by the year 2025 about 300 million people will have diabetes (*Abate and Chandalia*, 2001, *Shamim et al.*, 2008). Gestational diabetes (GDM) is a condition in which women without previously diagnosed diabetes exhibit high blood glucose levels during pregnancy. GDM generally has few symptoms and it is most commonly diagnosed by screening during pregnancy (*Moore et al.*, 2005).

The innate or natural immune system is the body's rapid first-line defense against environmental threats such as microbial infection and physical or chemical injury (*Spranger et al.*, 2003). A series of reactions are induced that prevent ongoing tissue damage, isolate and destroy infective agents, and activate repair processes to restore homeostasis. The maternal immune system is modulated in several ways during pregnancy such that a normal, robust response to pathogens is maintained and at the same time allows the fetus to survive and thrive (*Pradhan et al.*, 2001).

C-reactive protein is an acute phase serum reactant. Median CRP values during pregnancy were higher than values for non-pregnant ladies, and these values were elevated further in labor. Serum complement factors C3 and C4 are significantly elevated during the second and third trimesters of pregnancy (*Cunningham et al.*, 2002).

Estrogen and progesterone stimulate pancreatic B-cells hyperplasia leading to increased insulin secretion. While placental enzyme insulinase accelerate degradation of insulin (*Moore.*,2004). So, the net effect is decreased insulin effectiveness. Induced hypoglycemia causes increase in maternal glucagon (*Gilbert.*, 2007).

In our study, we aimed to clarify if there is an innate immunological risk factor for developing diabetes mellitus in pregnant woman apart from other hormonal and metabolic risk factors.

AIM OF THE WORK

The aim of this work is to focus on the role of inflammatory markers of innate immunity in pregnant female with or without diabetes mellitus and its significance.